fluorescence quantum yield
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 52)

H-INDEX

46
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 662
Author(s):  
Agnieszka Skotnicka ◽  
Janina Kabatc

A series of 2-phenacylbenzoxazole difluoroboranes named BODIPY dyes (1–8) was designed and applied as photosensitizers (PS) for radical photopolymerization of acrylate monomer. The light absorption within the ultraviolet-visible (UV–Vis) range (λmax = 350–410 nm; εmax = 23,000–42,500 M−1cm−1), that is strongly influenced by the substituents on the C3 and C4 atoms of phenyl ring, matched the emission of the Omnicure S2000 light within 320–500 nm. The photosensitizer possess fluorescence quantum yield from about 0.005 to 0.99. The 2-phenacylbenzoxazole difluoroboranes, together with borate salt (Bor), iodonium salt (Iod) or pyridinium salt (Pyr) acting as co-initiators, can generate active radicals upon the irradiation with a High Pressure Mercury Lamp which initiates a high-performance UV–Vis light-induced radical polymerization at 320–500 nm. The polymers obtained are characterized by strong photoluminescence. It was found that the type of radical generator (co-initiator) has a significant effect on the kinetic of radical polymerization of acrylate monomer. Moreover, the chemical structure of the BODIPY dyes does not influence the photoinitiating ability of the photoinitiator. The concentration of the photoinitiating system affects the photoinitiating performance. These 2-phenacylbenzoxazole difluoroborane-based photoinitiating systems have promising applications in UV–Vis-light induced polymerization.


2021 ◽  
pp. 1-10
Author(s):  
Ibrahim Erden ◽  
Betül Karadoğan ◽  
Fatma Aytan Kılıçarslan ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş

This work describes the synthesis, spectral and fluorescence properties of bis 4-(4-formyl-2,6-dimethoxyphenoxy) substituted zinc (ZnPc) and magnesium (MgPc) phthalocyanines. The new compounds have been characterized by elemental analysis, UV-Vis, FT-IR, 1H-NMR and mass spectra. Afterward, the effects of including metal ion on the photophysicochemical properties of the complexes were studied in biocompatible solvent DMSO to analyze their potential to use as a photosensitizer in photodynamic therapy (PDT). The fluorescence and singlet oxygen quantum yields were calculated as 0.04–0.15 and 0.70–0.52 for ZnPc and MgPc, respectively. According to the results, MgPc has higher fluorescence quantum yield than ZnPc, while ZnPc has higher singlet oxygen quantum yield than MgPc. The results show that the synthesized complexes can have therapeutic outcomes for cancer treatment.


2021 ◽  
Author(s):  
Zhe Shao ◽  
Wen-Ying Zhang ◽  
Ke Zhao

Abstract To improve two-photon absorption (TPA) response of a newly synthesized probe, a series of ratiometric two-photon fluorescent Zn2+ sensors based on quinoline and DPA moieties have been designed. The one-photon absorption, TPA and emission properties of the experimental and designed probes before and after coordination with Zn2+ are investigated employing the density functional theory in combination with response functions. The design consists of two levels. In the first level of design, five probes are constructed through using several electron acceptors or donors to increase accepting or donating ability of the fluorophores. It shows that all the designed probes have stronger TPA intensities at longer wavelengths with respect to the experimental probe because of the increased intra-molecular charge transfer. Moreover, it is found that the probe 4 built by adding an acyl unit has the largest TPA cross section among the designed strictures due to the form of longer conjugated length and more linear backbone. One dimethylamino terminal attached along the skeleton can improve TPA intensity more efficiently than two side amino groups. Therefore, in the second level of design, a new probe 7 is formed by both an acyl unit and a dimethylamino terminal. It exhibits that the TPA cross sections of probe 7 and its zinc complex increase dramatically. Furthermore, the fluorescence quantum yields of the designed probes 4 and 7 are calculated in a new way, which makes use of the relation between the computed difference of dipole moment and the measured fluorescence quantum yield. The result shows that our design also improves the fluorescence quantum yield considerably. All in all, the designed probes 4 and 7 not only possess enhanced TPA intensities but also have large differences of emission wavelength upon Zn2+ coordination and strong fluorescence intensity, which demonstrates that they are potential ratiometric two-photon fluorescent probes.


2021 ◽  
Vol 88 (6) ◽  
pp. 852-857
Author(s):  
A. A. Maskevich

The spectral properties of a new benzothiazole dye modified with polyethylene glycol have been investigated. A strong dependence of the fluorescence quantum yield on the viscosity and polarity of the medium has been shown, i.e. the conjugation of the dye with polyethylene glycol does not lead to the loss of the properties of the molecular rotor, while significantly reduces its aggregation. When incorporated into amyloid fibrils, the quantum yield of the dye increases by more than 40 times; the new dye can be regarded as an efficient fluorescent probe for amyloid fibrils detection and research. In this case, not only the intensity, but also the position of the absorption spectrum can be used as a sensitive parameter. The presence of blood plasma proteins (albumins) in the solution has practically no effect on the position of the absorption spectrum and has little effect on the fluorescence intensity of the probe.


2021 ◽  
Vol 55 (2 (255)) ◽  
pp. 112-117
Author(s):  
Karine R. Grigoryan ◽  
Hasmik A. Shilajyan ◽  
Iskuhi L. Aleksanyan ◽  
Zara L. Grigoryan ◽  
Lilit P. Hambardzumyan

Fluorescence properties of 4-hydroxy-2-methylquinoline (1) and 2-(5-mercapto-1,3,4-oxadiazol-2-yl)-6-methylquinoline-4-ol (2) were studied in dimethylsulfoxide (DMSO) aqueous solutions. The fluorescence properties of 1 and 2 exhibit substantial dependence on the DMSO concentration. The fluorescence quantum yield $(\Phi_f)$ of 1 decreases upon adding DMSO due to the shift in the keto-enol (E) tautomeric equilibrium toward E form․ On the contrary 2 demonstrates a tendency of increase of $\Phi_f$ upon adding DMSO due to intermolecular charge transfer from DMSO to the aromatic ring of quinoline, which increases the electron density on the ring and hence the fluorescence efficiency.


2021 ◽  
Author(s):  
Rupam Roy ◽  
Aasif Khan ◽  
Oendrila Chatterjee ◽  
Sukomal Bhunia ◽  
Apurba Lal Koner

Perylene dyes have transcended their role as simple colorants and have been reinvigorated as functional dyes. Based on the substitution at the peri position by six-membered carboxylic imides, the perylene family is principally embellished with perylene diimides (PDIs) and perylene monoimides (PMIs). Perylene dyes are widely acclaimed and adorned on account of their phenomenal thermal, chemical, and photostability juxtaposed with their high absorption coefficient and near-unity fluorescence quantum yield. Although symmetric PDIs have always been in the limelight, its asymmetrical counterpart PMI is already rubbing shoulders, thanks to the consistent efforts of several scientific minds. Recently, there has been an upsurge in engendering PMI-based versatile organic architectures decked with intriguing photophysical properties and pertinent applications. In this review, the synthesis and photophysical features of various PMI-based derivatives along with their relevant applications in the arena of organic photovoltaics, photocatalysis, self-assembly, fluorescence sensing, and bioimaging are accrued and expounded, hoping to enlighten the less delved but engrossing realm of PMIs.


Sign in / Sign up

Export Citation Format

Share Document