Isotope Effect Studies on Elimination Reactions. X. The Nature of The Transition State for the ECO2 Reaction of Para- substituted Benzyl Nitrates with Base in 90% by Volume Ethanol–Water

1975 ◽  
Vol 53 (9) ◽  
pp. 1319-1326 ◽  
Author(s):  
Peter James Smith ◽  
Carol Audrey Pollock ◽  
Arthur Newcombe Bourns

Kinetic isotope effects have been determined for the Eco2 reaction of para-substituted benzyl nitrates with ethoxide in 90 vol.% ethanol–water at 20°. The nitrogen isotope effect, (k14/k15−1)100 decreased with increasing electron-withdrawing ability of the para-substituent; i.e. 2.26, 1.95, 1.60, and 0.84 for p-CH3, p-H, p-CF3, and p-NO2, respectively. Furthermore, the primary hydrogen–deuterium isotope effects increased also for electron-withdrawing substituents; i.e. kH/kD = 5.78, 6.06, 6.40, 6.67, and 7.05 for p-CH3, p-H, p-Br, p-CF3, and p-NO2, respectively. The results are discussed in terms of a recent theoretical treatment dealing with the effect of substituents on the nature of the transition state for a concerted E2 process. The conclusion is reached that any structural change which causes one bond (carbon–hydrogen) to be weakened more at the transition state will have a corresponding effect on the other bond (oxygen–nitrogen).


1974 ◽  
Vol 52 (5) ◽  
pp. 749-760 ◽  
Author(s):  
P. J. Smith ◽  
A. N. Bourns

Kinetic isotope effects have been determined for the E2 reaction of some 2-arylethyltrimethyl-ammonium ions with ethoxide in ethanol at 40°. The nitrogen effect, (k14/k15 − 1)100, decreased with increasing electron-withdrawing ability of the para substituent; i.e. 1.37, 1.33, 1.14, and 0.88 for p-OCH3, p-H, p-Cl, and p-CF3, respectively. Furthermore, the primary hydrogen–deuterium isotope effects increased for the same substituents, respectively; i.e. kH/kD = 2.64, 3.23, 3.48, and 4.16. A large positive ρ value of 3.66 was found as well as a small secondary α-deuterium effect of 1.02 for p-H. In addition, the nitrogen isotope effect decreased with increasing strength of the abstracting base for the reaction of ethyltrimethylammonium ion; i.e. 1.86 and 1.41 at 60° for reaction with EtO−–EtOH and t-BuO−–t-BuOH, respectively. The results are discussed in terms of recent theoretical treatments of the effect of base, substituents, and nature of the leaving group on the nature of the transition state for an E2 process. The conclusion is reached that any structural change which causes one bond (C—H) to be weakened more at the transition state will have a corresponding effect on the other bond [Formula: see text]



1996 ◽  
Vol 74 (12) ◽  
pp. 2528-2530 ◽  
Author(s):  
T.V. Pham ◽  
K.C. Westaway

The nitrogen and secondary α-hydrogen–deuterium kinetic isotope effects found for the SN2 reaction between thiophenoxide ion and benzyldimethylphenylammonium ion at different ionic strengths in DMF at 0 °C indicate that the structure of the transition state changes markedly with the ionic strength of the reaction mixture. In fact, a more reactant-like, more ionic, transition state is found at the higher ionic strength. This presumably occurs because a more ionic transition state is more stable in the more ionic solvent. Key words: transition state, ionic strength, secondary α deuterium kinetic isotope effects, nitrogen isotope effects, SN2.



2000 ◽  
Vol 122 (30) ◽  
pp. 7342-7350 ◽  
Author(s):  
Terry Koerner ◽  
Yao-ren Fang ◽  
Kenneth Charles Westaway


1960 ◽  
Vol 38 (11) ◽  
pp. 2171-2177 ◽  
Author(s):  
K. T. Leffek ◽  
J. A. Llewellyn ◽  
R. E. Robertson

The secondary β-deuterium isotope effects have been measured in the water solvolytic reaction of alkyl halides and sulphonates for primary, secondary, and tertiary species. In every case the kinetic isotope effect was greater than unity (kH/kD > 1). This isotope effect may be associated with varying degrees of hyperconjugation or altered non-bonding intramolecular forces. The experiments make it difficult to decide which effect is most important.



1972 ◽  
Vol 50 (7) ◽  
pp. 982-985 ◽  
Author(s):  
K. T. Leffek ◽  
A. F. Matheson

Secondary kinetic deuterium isotope effects are presented for the reaction of methyl-d3 iodide and pyridine in four different solvents. Calculations on mass and moment of inertia change with deuteration in the initial state and an assumed tetrahedral transition state, together with internal rotational effects, are used to rationalize the inverse isotope effects. It is concluded from the variation of the isotopic rate ratio, that the transition state structure varies with solvent.



1975 ◽  
Vol 53 (23) ◽  
pp. 3513-3525 ◽  
Author(s):  
Peter Schmid ◽  
Arthur Newcombe Bourns

Kinetic isotope effects have been determined for the E2 reactions of a series of 2-phenylethyldimethylanilinium salts containing substituents in the aniline ring with sodium ethoxide in ethanol at 40 °C. The nitrogen isotope effect, (k14/k15−1)100, is not very sensitive to substituent changes but appears to increase slightly with increasing electron-withdrawing ability of the substituents, i.e., 1.19 ± 0.07, 1.13 ± 0.06, 1.12 ± 0.08, 1.30 ± 0.07, and 1.32 ± 0.06 for p-OCH3, p-CH3, p-H, p-Cl, and, m-CF3, respectively. The hydrogen–deuterium isotope effects pass through a minimum in the region of the unsubstituted compound and increase both with increasing electron-donating as well as with electron-withdrawing power of the substituents, i.e. kH/kD = 4.70 ± 0.06, 4.61 ± 0.04, 4.51 ± 0.04, 4.53 ± 0.09, 5.00 ± 0.07, and 5.39 ± 0.07 for p-OCH3, p-CH3, p-H, p-Cl, m-CF3, and p-CF3, respectively. The results are discussed in terms of recent theoretical treatments of the effect of structural variations in the reactants on the nature of the transition state of E2 elimination reactions. The conclusion is reached that the transition states in the present reaction series can be characterized as 'central with slight carbanion character' and that the effect of a change in the ability of the leaving group on the structure of the transition state manifests itself mainly in the direction perpendicular to the reaction coordinate. A simple novel hypothesis is formulated which emphasizes the importance of the location of the transition state in a More O'Ferrall-type potential energy diagram in determining its sensitivity to structural changes in the reactants.



2016 ◽  
Vol 52 (24) ◽  
pp. 4462-4465 ◽  
Author(s):  
Shuming Zhang ◽  
Hong Gu ◽  
Haoyuan Chen ◽  
Emily Strong ◽  
Edward W. Ollie ◽  
...  

Solvent D2O and18O kinetic isotope effects on RNA 2′-O-transphosphorylation catalyzed by Zn2+demonstrate an altered transition state relative to specific base catalysis.



1978 ◽  
Vol 33 (12) ◽  
pp. 1496-1502
Author(s):  
Fouad M. Fouad ◽  
Patrick G. Farrell

AbstractRates of HCN elimination from polycyanides N,N-dimethyl-4-(1,2,2-tricyanoethyl)-aniline (1), 9-cyano-9-dicyanomethyl fluorene (2), 1,1-diphenyl-1,2,2-tricyanoethane (3), and 2-phenyl-1,1,2-tricyanopropane (4) have been studied in methanol. Elimination from 1 occurs via (E 1 c B)R, mechanism. On the other hand olefin formation from 2-4 has been shown to occur via (E 1)anion pathway. Heavy atom kinetic isotope effects indicated that product stability is not the sole factor controlling the transition state geometries. Values of k12/k14 were found to be in the order 2 > 3 > 4 > 1 which implied transition states with more carbanion-like structure in the opposite direction. Solvent isotope effects and enthalpies of activation were also determined and discussed in terms of transition states geometries.



1980 ◽  
Vol 58 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Robert R. Fraser ◽  
Philippe J. Champagne

Primary kinetic isotope effects have been measured for the base-catalyzed exchange reaction of 4′,1″-dimethyl-1,2,3,4-dibenzcyclohepta-1,3-diene-6-one, 1. It was found that the isotope effects kH/kT and kD/kT for the faster exchanging protons (13.6 and 3.8 respectively) are significantly larger than the corresponding values for the slower exchanging protons (4.6 and 1.6 respectively). These differences could result from truly unequal isotope effects due to transition state differences or intrusion of a second pathway for exchange of the less reactive proton in the dedeuteration reaction. The data appear to support the latter interpretation. The secondary deuterium isotope effect was found to be 1.18.



2004 ◽  
Vol 82 (9) ◽  
pp. 1336-1340
Author(s):  
Xicai Huang ◽  
Andrew J Bennet

The aqueous ethanolysis reactions of adamantylideneadamantyl tosylate, -bromide, and -iodide (1-OTs, 1-Br and 1-I) were monitored as a function of ionic strength. Special salt effects are observed during the solvolyses of both homoallylic halides, but not in the case of the tosylate 1-OTs. The measured α-secondary deuterium kinetic isotope effects for the solvolysis of 1-Br in 80:20 and 60:40 v/v ethanol–water mixtures at 25 °C are 1.110 ± 0.018 and 1.146 ± 0.009, respectively. The above results are consistent with the homoallylic halides reacting via a virtual transition state in which both formation and dissociation of a solvent-separated ion pair are partially rate-determining. While the corresponding transition state for adamantylideneadamantyl tosylate involves formation of the solvent-separated ion pair.Key words: salt effects, kinetic isotope effect, internal return, solvolysis, ion pairs.



Sign in / Sign up

Export Citation Format

Share Document