Isotope Effect Studies on Elimination Reactions. IX. The Nature of the Transition State for the E2 Reaction of 2-Arylethylammonium Ions with Ethoxide in Ethanol

1974 ◽  
Vol 52 (5) ◽  
pp. 749-760 ◽  
Author(s):  
P. J. Smith ◽  
A. N. Bourns

Kinetic isotope effects have been determined for the E2 reaction of some 2-arylethyltrimethyl-ammonium ions with ethoxide in ethanol at 40°. The nitrogen effect, (k14/k15 − 1)100, decreased with increasing electron-withdrawing ability of the para substituent; i.e. 1.37, 1.33, 1.14, and 0.88 for p-OCH3, p-H, p-Cl, and p-CF3, respectively. Furthermore, the primary hydrogen–deuterium isotope effects increased for the same substituents, respectively; i.e. kH/kD = 2.64, 3.23, 3.48, and 4.16. A large positive ρ value of 3.66 was found as well as a small secondary α-deuterium effect of 1.02 for p-H. In addition, the nitrogen isotope effect decreased with increasing strength of the abstracting base for the reaction of ethyltrimethylammonium ion; i.e. 1.86 and 1.41 at 60° for reaction with EtO−–EtOH and t-BuO−–t-BuOH, respectively. The results are discussed in terms of recent theoretical treatments of the effect of base, substituents, and nature of the leaving group on the nature of the transition state for an E2 process. The conclusion is reached that any structural change which causes one bond (C—H) to be weakened more at the transition state will have a corresponding effect on the other bond [Formula: see text]

1975 ◽  
Vol 53 (9) ◽  
pp. 1319-1326 ◽  
Author(s):  
Peter James Smith ◽  
Carol Audrey Pollock ◽  
Arthur Newcombe Bourns

Kinetic isotope effects have been determined for the Eco2 reaction of para-substituted benzyl nitrates with ethoxide in 90 vol.% ethanol–water at 20°. The nitrogen isotope effect, (k14/k15−1)100 decreased with increasing electron-withdrawing ability of the para-substituent; i.e. 2.26, 1.95, 1.60, and 0.84 for p-CH3, p-H, p-CF3, and p-NO2, respectively. Furthermore, the primary hydrogen–deuterium isotope effects increased also for electron-withdrawing substituents; i.e. kH/kD = 5.78, 6.06, 6.40, 6.67, and 7.05 for p-CH3, p-H, p-Br, p-CF3, and p-NO2, respectively. The results are discussed in terms of a recent theoretical treatment dealing with the effect of substituents on the nature of the transition state for a concerted E2 process. The conclusion is reached that any structural change which causes one bond (carbon–hydrogen) to be weakened more at the transition state will have a corresponding effect on the other bond (oxygen–nitrogen).


1996 ◽  
Vol 74 (12) ◽  
pp. 2528-2530 ◽  
Author(s):  
T.V. Pham ◽  
K.C. Westaway

The nitrogen and secondary α-hydrogen–deuterium kinetic isotope effects found for the SN2 reaction between thiophenoxide ion and benzyldimethylphenylammonium ion at different ionic strengths in DMF at 0 °C indicate that the structure of the transition state changes markedly with the ionic strength of the reaction mixture. In fact, a more reactant-like, more ionic, transition state is found at the higher ionic strength. This presumably occurs because a more ionic transition state is more stable in the more ionic solvent. Key words: transition state, ionic strength, secondary α deuterium kinetic isotope effects, nitrogen isotope effects, SN2.


1975 ◽  
Vol 53 (23) ◽  
pp. 3513-3525 ◽  
Author(s):  
Peter Schmid ◽  
Arthur Newcombe Bourns

Kinetic isotope effects have been determined for the E2 reactions of a series of 2-phenylethyldimethylanilinium salts containing substituents in the aniline ring with sodium ethoxide in ethanol at 40 °C. The nitrogen isotope effect, (k14/k15−1)100, is not very sensitive to substituent changes but appears to increase slightly with increasing electron-withdrawing ability of the substituents, i.e., 1.19 ± 0.07, 1.13 ± 0.06, 1.12 ± 0.08, 1.30 ± 0.07, and 1.32 ± 0.06 for p-OCH3, p-CH3, p-H, p-Cl, and, m-CF3, respectively. The hydrogen–deuterium isotope effects pass through a minimum in the region of the unsubstituted compound and increase both with increasing electron-donating as well as with electron-withdrawing power of the substituents, i.e. kH/kD = 4.70 ± 0.06, 4.61 ± 0.04, 4.51 ± 0.04, 4.53 ± 0.09, 5.00 ± 0.07, and 5.39 ± 0.07 for p-OCH3, p-CH3, p-H, p-Cl, m-CF3, and p-CF3, respectively. The results are discussed in terms of recent theoretical treatments of the effect of structural variations in the reactants on the nature of the transition state of E2 elimination reactions. The conclusion is reached that the transition states in the present reaction series can be characterized as 'central with slight carbanion character' and that the effect of a change in the ability of the leaving group on the structure of the transition state manifests itself mainly in the direction perpendicular to the reaction coordinate. A simple novel hypothesis is formulated which emphasizes the importance of the location of the transition state in a More O'Ferrall-type potential energy diagram in determining its sensitivity to structural changes in the reactants.


2016 ◽  
Vol 52 (24) ◽  
pp. 4462-4465 ◽  
Author(s):  
Shuming Zhang ◽  
Hong Gu ◽  
Haoyuan Chen ◽  
Emily Strong ◽  
Edward W. Ollie ◽  
...  

Solvent D2O and18O kinetic isotope effects on RNA 2′-O-transphosphorylation catalyzed by Zn2+demonstrate an altered transition state relative to specific base catalysis.


1980 ◽  
Vol 58 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Robert R. Fraser ◽  
Philippe J. Champagne

Primary kinetic isotope effects have been measured for the base-catalyzed exchange reaction of 4′,1″-dimethyl-1,2,3,4-dibenzcyclohepta-1,3-diene-6-one, 1. It was found that the isotope effects kH/kT and kD/kT for the faster exchanging protons (13.6 and 3.8 respectively) are significantly larger than the corresponding values for the slower exchanging protons (4.6 and 1.6 respectively). These differences could result from truly unequal isotope effects due to transition state differences or intrusion of a second pathway for exchange of the less reactive proton in the dedeuteration reaction. The data appear to support the latter interpretation. The secondary deuterium isotope effect was found to be 1.18.


2004 ◽  
Vol 82 (9) ◽  
pp. 1336-1340
Author(s):  
Xicai Huang ◽  
Andrew J Bennet

The aqueous ethanolysis reactions of adamantylideneadamantyl tosylate, -bromide, and -iodide (1-OTs, 1-Br and 1-I) were monitored as a function of ionic strength. Special salt effects are observed during the solvolyses of both homoallylic halides, but not in the case of the tosylate 1-OTs. The measured α-secondary deuterium kinetic isotope effects for the solvolysis of 1-Br in 80:20 and 60:40 v/v ethanol–water mixtures at 25 °C are 1.110 ± 0.018 and 1.146 ± 0.009, respectively. The above results are consistent with the homoallylic halides reacting via a virtual transition state in which both formation and dissociation of a solvent-separated ion pair are partially rate-determining. While the corresponding transition state for adamantylideneadamantyl tosylate involves formation of the solvent-separated ion pair.Key words: salt effects, kinetic isotope effect, internal return, solvolysis, ion pairs.


1979 ◽  
Vol 57 (11) ◽  
pp. 1354-1367 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

The nucleophilic substitution reactions of a series of 4-substituted phenylbenzyldimethyl-ammonium ions with thiophenoxide ions at 0 °C in N,N-dimethylformamide have been used to demonstrate how a change in the leaving group alters the structure of the SN2 transition state. Heavy atom (nitrogen) kinetic isotope effects, secondary α-deuterium kinetic isotope effects and Hammett ρ values provide qualitative descriptions of both the nucleophile–α-carbon and α-carbon–leaving group bonds in the transition states of these reactions. The results indicate that changing to a better leaving group causes the bond between the α-carbon and the nucleophile to be much more fully formed while the bond to the leaving group is essentially unchanged. The results are discussed in the light of current theories of substituent effects on SN2 reactions and a possible explanation for the surprising results (i) that the greatest effect is in the bond more remote from the point of structural change and (ii) that more nucleophilic assistance is required to displace a better leaving group is given.


1966 ◽  
Vol 44 (16) ◽  
pp. 1889-1897 ◽  
Author(s):  
Alfred V. Willi

Kinetic deuterium and carbon-13 isotope effects are calculated for the SN2 exchange reaction of CH3I with *I−(131) and for the CH3I solvolysis in water. The normal vibrational frequencies of CH3I and of the transition state [Formula: see text] (X = I or OH2) are evaluated from force constants by solving the secular equation with an IBM 7094 computer. Values for force constants of the planar CH3 moiety (with an sp2 C atom) in the transition state are obtained by comparison with suitable stable molecules. For the iodide exchange reaction, there is not much dependence of the calculated D isotope effect on the particular choice of ƒCI and ƒ12 (interaction between CI stretches) if these force constants are within reasonable limits. The bending force constantƒHCI (≠) may then be adj usted to reproduce the experimental D isotope effect.Based on the simple transition state model [Formula: see text] it is not possible to obtain agreement with the experimental D effect in the solvolysis reaction without assuming an extremely high value of ƒHCI. If must be concluded that a water molecule is probably involved in the transition state. On the basis of the model [Formula: see text] the experimental D effect may be reproduced with a suitable choice of ƒHCI and ƒHCO. It is shown that, under favorable circumstances, experimental temperature dependence data may be applied for a distinction between different sets of, ƒCH, ƒHCH, and ƒHCI (or ƒHCO) which reproduce the experimental isotope effect at one temperature.


Sign in / Sign up

Export Citation Format

Share Document