Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2 NH, and (CH3)3N

1976 ◽  
Vol 54 (10) ◽  
pp. 1624-1642 ◽  
Author(s):  
Gervase I. Mackay ◽  
Ronald S. Hemsworth ◽  
Diethard K. Bohme

The flowing afterglow technique has been employed in measurements of the rate and equilibrium constants at 296 ± 2 K for reactions of the type[Formula: see text]and[Formula: see text]where R1 and R2 may be H, CH3, or C2H5. The equilibrium constant measurements provided absolute values for the intrinsic (gas-phase) acidities of the Brønsted acids CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N, the heats of formation of their conjugate bases, and the electron affinities of the corresponding radicals R1R2N. Proton removal energies, ΔG0298/(kcal mol−1), were determined to be 395.7 ± 0.7 for [Formula: see text] 391.7 ± 0.7 for [Formula: see text] 389.2 ± 0.6 for [Formula: see text] and > 396 for [Formula: see text] Heats of formation, ΔH0f.,298, were determined to be 30.5 ± 1.5 for CH3NH−, 21.2 ± 1.5 for C2H5NH−, and 24.7 ± 1.4 for (CH3)2N−. Electron affinities (in kcal mol−1) were determined to be 13.1 ± 3.5 for CH3NH, 17 ± 4 for C2H5NH, and 14.3 ± 3.4 for (CH3)2N. These results quantify earlier conclusions regarding the intrinsic effects of substituents on the gas-phase acidity of amines and provide an experimental assessment of recent molecular orbital calculations of proton removal energies for alkylamines.

1982 ◽  
Vol 60 (15) ◽  
pp. 1907-1918 ◽  
Author(s):  
M. A. French ◽  
S. Ikuta ◽  
P. Kebarle

Equilibrium constants K1 for reaction [1] RH + Cl− = RHCl− in the gas phase were measured with a high pressure mass spectrometer under chemical ionization conditions. Data for some 40 compounds RH are presented. It is found that the binding free energies [Formula: see text] for RH = oxygen acids increase with the gas phase acidity of RH. The strongest bonds are formed with strong acids like HCO2H, CH3CO2H, and phenol. Water and alkyl alcohols give much weaker interactions. A simple relationship between gas phase acidity and binding free energy does not occur for RH = carbon acids. Carbon acids like cyclopentadiene, whose high gas phase acidity is largely due to charge derealization by conjugation in the completed anion, do not give Cl− adducts with stability commensurate with the acidity. A relationship between gas phase acidity and binding energy is found for carbon acids with carbonyl groups and for the substituted toluenes. Molecular orbital calculations with the STO-3G basis set provide insights to the bonding occurring in RHCl−. For all cases investigated, hydrogen bonding to Cl− provides the most stable structure. Generally the hydrogen bond occurs through the hydrogen which has the highest net positive charge. The hydrogen bond strength is found approximately proportional to this positive charge. Another proportionality is found between the charge transferred from Cl− to RH, on formation of RHCl−, and the strength of the hydrogen bond.


1971 ◽  
Vol 49 (20) ◽  
pp. 3308-3314 ◽  
Author(s):  
J. D. Payzant ◽  
R. Yamdagni ◽  
P. Kebarle

By measuring the A−(H2O)n−1 + H2O = A−(H2O)n equilibria in the gas phase and their temperature dependence, the equilibrium constants and ΔHn, n–1 and ΔSn, n–1 for some of the hydrates of NO2−, NO3−, CN−, and OH− were determined. Available thermochemical data are used for the evaluation of the total heats of hydration of the above ions. The total heats of hydration were then compared with the ΔH1,0. Relative to the total hydration energies the ΔH1,0 of the above ions were found larger than the ΔH1,0 of the halide ions.An approximate linear correlation was found to exist between ΔH1,0 of negative ions and the heterolytic bond dissociation energy D(A−–H+). With this relationship independent estimates for the electron affinities of NO2 and NO3 could be obtained.The ΔHn, n–1 of OH− were found in essential agreement with earlier measurements from this laboratory and in disagreements with recent measurements (Friedman) which gave much higher values.


1992 ◽  
Vol 70 (8) ◽  
pp. 2234-2240 ◽  
Author(s):  
C. F. Rodriquez ◽  
A. C. Hopkinson

The results of abinitio molecular orbital calculations at the MP4SDTQ/6-31++G(d,p)//HF/6-31++G(d,p) level have been used to calculate acidities of fluoro- and chloro-substituted silanes and silyl radicals. The radicals are more acidic than the silanes and substituent effects are also slightly larger in the radicals. For the gas phase deprotonation of fluorosilanes at 298 K, ΔHr (kcal/mol) values are SiH4, 378.5; SiH3F, 374.5; SiH2F, 366.7, and SiHF3, 351.0, i.e., interaction between fluorine atoms leads to increased enhancement of acidity. For chlorosilanes substituent effects are larger but strictly additive (13 kcal/mol for each Cl atom) with ΔHr values SiH3Cl, 365.4; SiH2Cl2 352.5, and SiHCl3 339.4. The electron affinities of silyl radicals calculated using isogyric reactions at the MP4SDTQ/6-31++G(d,p) level are too low by ~0.3 eV, but at the MP4SDTQ/6-311++G(2df,p) level the calculated electron affinity of SiH3 is 1.39 eV, compared with an experimental value of 1.44 ± 0.03 eV. This higher level of theory gives calculated electron affinities of 1.53 eV for SiH2F and 1.92 eV for SiH2Cl. Heats of formation obtained by using isogyric reactions to calculate atomization energies at the MP4SDTQ/6-311++G(2df,p) level are within 3 kcal/mol of experimental values except for SiH2F (where the "experimental" value was obtained from linear interpolation between SiH3 and SiF3). [Formula: see text] (kcal/mol) calculated for the anions are SiH3−, 14.4; SiH2F−, −78.0; and SiH2Cl−, −37.6.


1971 ◽  
Vol 49 (6) ◽  
pp. 979-981 ◽  
Author(s):  
L. Brewster Young ◽  
E. Lee-Ruff ◽  
D. K. Bohme

The gas-phase acidity order at 300 °K of the inorganic acids, water, ammonia, and hydrogen has been directly determined using the flowing afterglow technique. The order established is H2O > H2 > NH3, water being the strongest acid in this series. This result is inconsistent with recent calculations, current available thermochemical data, and the order found in solution.


1974 ◽  
Vol 52 (5) ◽  
pp. 861-863 ◽  
Author(s):  
R. Yamdagni ◽  
P. Kebarle

Measurements of the proton transfer equilibria: A1− + A2H = A2− with a pulsed electron beam high pressure mass spectrometer were extended to α, β, γ chlorosubstituted aliphatic acids. The equilibrium constants were used to evaluate ΔG0 for the proton transfer reactions. Assuming ΔG ≈ ΔH and using standard acids AH for which the difference between the bond dissociation energy D(A—H) and the electron affinity of A, EA(A) was known one could evaluate the corresponding difference for the newly measured acids and place them on an absolute acidity scale. The gas phase acidity was observed to increase in the order: acetic, propionic, butyric, γ-Cl butyric, β-Cl butyric, β-Cl propionic, α-Cl butyric, α-Cl propionic, α-Cl acetic. The gas phase acidities are compared with those observed in aqueous solution. The effects of the Cl substituent parallel those in solution but are much larger. The attenuation occurring in solution is attributed to weaker hydrogen bonding of the chloro stabilized acid anions to water molecules.


1978 ◽  
Vol 56 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Kenichiro Tanaka ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

The flowing afterglow technique has been employed in the measurement of rate and equilibrium constants at 296 ± 2 K for unsolvated proton transfer reactions of the type [Formula: see text] and several solvated proton transfer reactions of the type [Formula: see text] where X and Y may be H2O, H2S, HCN, or H2CO. Where possible, direct comparisons are made with similar measurements performed with other techniques. The equilibrium constant measurements provide a measure of the relative proton affinities of H2O, H2S, HCN, and H2CO and absolute values for PA(H2O) = 166.4 ± 2.4 kcal mol−1, PA(H2S) = 170.2 ± 1.8 kcal mol−1, and PA(HCN) = 171.0 ± 1.7 kcal mol−1 when reference is made to PA(H2CO) = 170.9 ± 1.2 kcal mol−1 which can be derived from available thermochemical information. The rate constant measurements reinforce the generalization that unsolvated proton transfer involving simple molecules proceeds with high efficiency and provide information about the influence of solvation on this efficiency.


1978 ◽  
Vol 56 (1) ◽  
pp. 1-9 ◽  
Author(s):  
J. B. Cumming ◽  
P. Kebarle

The complete ladder of ΔG10 determinations obtained from measurements of some 110 gas phase proton transfer equilibria A1− + A2H = A1H + A2− involving some 60 acids AH and connecting to the standard acid HCl is given. Evaluation of the entropy changes leads to values for the deprotonation energies ΔHD0 and ΔGD0 (at room temperature) corresponding to the gas phase process AH = A− + H+; ΔHD0 = D(A—H) − EA(A) + 313.6 kcal/mol. Comparison of the present data with literature determinations of the bond dissociation energies and electron affinities shows agreement within 2 kcal/mol. Some experimentally determined entropy changes ΔS10 are compared with the theoretically calculated values.


Sign in / Sign up

Export Citation Format

Share Document