Hydration of CN−, NO2−, NO3−, and OH− in the Gas Phase

1971 ◽  
Vol 49 (20) ◽  
pp. 3308-3314 ◽  
Author(s):  
J. D. Payzant ◽  
R. Yamdagni ◽  
P. Kebarle

By measuring the A−(H2O)n−1 + H2O = A−(H2O)n equilibria in the gas phase and their temperature dependence, the equilibrium constants and ΔHn, n–1 and ΔSn, n–1 for some of the hydrates of NO2−, NO3−, CN−, and OH− were determined. Available thermochemical data are used for the evaluation of the total heats of hydration of the above ions. The total heats of hydration were then compared with the ΔH1,0. Relative to the total hydration energies the ΔH1,0 of the above ions were found larger than the ΔH1,0 of the halide ions.An approximate linear correlation was found to exist between ΔH1,0 of negative ions and the heterolytic bond dissociation energy D(A−–H+). With this relationship independent estimates for the electron affinities of NO2 and NO3 could be obtained.The ΔHn, n–1 of OH− were found in essential agreement with earlier measurements from this laboratory and in disagreements with recent measurements (Friedman) which gave much higher values.

1976 ◽  
Vol 54 (10) ◽  
pp. 1624-1642 ◽  
Author(s):  
Gervase I. Mackay ◽  
Ronald S. Hemsworth ◽  
Diethard K. Bohme

The flowing afterglow technique has been employed in measurements of the rate and equilibrium constants at 296 ± 2 K for reactions of the type[Formula: see text]and[Formula: see text]where R1 and R2 may be H, CH3, or C2H5. The equilibrium constant measurements provided absolute values for the intrinsic (gas-phase) acidities of the Brønsted acids CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N, the heats of formation of their conjugate bases, and the electron affinities of the corresponding radicals R1R2N. Proton removal energies, ΔG0298/(kcal mol−1), were determined to be 395.7 ± 0.7 for [Formula: see text] 391.7 ± 0.7 for [Formula: see text] 389.2 ± 0.6 for [Formula: see text] and > 396 for [Formula: see text] Heats of formation, ΔH0f.,298, were determined to be 30.5 ± 1.5 for CH3NH−, 21.2 ± 1.5 for C2H5NH−, and 24.7 ± 1.4 for (CH3)2N−. Electron affinities (in kcal mol−1) were determined to be 13.1 ± 3.5 for CH3NH, 17 ± 4 for C2H5NH, and 14.3 ± 3.4 for (CH3)2N. These results quantify earlier conclusions regarding the intrinsic effects of substituents on the gas-phase acidity of amines and provide an experimental assessment of recent molecular orbital calculations of proton removal energies for alkylamines.


1973 ◽  
Vol 51 (15) ◽  
pp. 2507-2511 ◽  
Author(s):  
R. Yamdagni ◽  
J. D. Payzant ◽  
P. Kebarle

Determination of the temperature dependence of the equilibrium constants Kn,n−1 for the reactions A −Bn = A −Bn−1 + B where A− equals Cl− and O2− and B is HOH, CH3OH, or CH3CN leads to the corresponding ΔH0n−1, ΔG0n−1,n, and ΔS0n−1,n values. The experimental technique is based on mass spectrometric detection of ions escaping from a high pressure ion source. At n = 1, Cl− is solvated most strongly by methanol, then CH3CN and HOH. At higher n a cross over is observed with water becoming the best solvent. These results are in agreement with the positive transfer enthalpies and free energies for Cl− from the liquid solvents HOH → CH3OH and HOH → CH3CN reported in the literature.O2− is solvated more strongly than Cl− appearing thus as an ion of "size" intermediate between Cl− and F− Again CH3OH gives the highest interaction for n = 1, however for n > 1 water gives stronger interactions.


Sign in / Sign up

Export Citation Format

Share Document