A self-consistent field wavefunction suited for calculation of the electric field gradient in HCl

1976 ◽  
Vol 54 (12) ◽  
pp. 1948-1951 ◽  
Author(s):  
J. E. Grabenstetter ◽  
M. A. Whitehead

A single-centre basis set on Cl is developed for an SCF calculation on HCl to give an accurate expectation value for the electric field gradient at the Cl nucleus. The SCF energy, orbital eigenvalues, dipole moment, molecular electric quadrupole moment, Hellmann–Feynman force on Cl and virial ratio are also reported, and the variation of the electric field gradient at Cl with changes in internuclear distance is examined.

2003 ◽  
Vol 118 (16) ◽  
pp. 7329 ◽  
Author(s):  
Sonia Coriani ◽  
Asger Halkier ◽  
Dan Jonsson ◽  
Jürgen Gauss ◽  
Antonio Rizzo ◽  
...  

2007 ◽  
Vol 62 (12) ◽  
pp. 711-715 ◽  
Author(s):  
Ahmad Seif ◽  
Mahmoud Mirzaei ◽  
Mehran Aghaie ◽  
Asadollah Boshra

Density functional theory (DFT) calculations were performed to calculate the electric field gradient (EFG) tensors at the sites of aliminium (27Al) and nitrogen (14N) nuclei in an 1 nm of length (6,0) single-walled aliminium nitride nanotube (AlNNT) in three forms of the tubes, i. e. hydrogencapped, aliminium-terminated and nitrogen-terminated as representatives of zigzag AlNNTs. At first, each form was optimized at the level of the Becke3,Lee-Yang-Parr (B3LYP) method, 6-311G∗∗ basis set. After, the EFG tensors were calculated at the level of the B3LYP method, 6-311++G∗∗ and individual gauge for localized orbitals (IGLO-II and IGLO-III) types of basis sets in each of the three optimized forms and were converted to experimentally measurable nuclear quadrupole resonance (NQR) parameters, i. e. quadrupole coupling constant (qcc) and asymmetry parameter (ηQ). The evaluated NQR parameters revealed that the considered model of AlNNT can be divided into four equivalent layers with similar electrostatic properties.With the exception of Al-1, all of the three other Al layers have almost the same properties, however, N layers show significant differences in the magnitudes of the NQR parameters in the length of the nanotube. Furthermore, the evaluated NQR parameters of Al-1 in the Al-terminated form and N-1 in the N-terminated form revealed the different roles of Al (base agent) and of N (acid agent) in AlNNT. All the calculations were carried out using the GAUSSIAN 98 package program.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 163-165 ◽  
Author(s):  
Tae-Kyu Ha

Based on the calculated electric field gradient (q) from ab initio Cl wavefunctions with largebasis set (including ƒ functions on N and d functions on H) and the experimental nuclearquadrupole coupling constant (e Q q) for nitrogen in NH3, an improved value o f the quadrupole moment of 14N is proposed as Q (14N ) = 2.08 x 10-26cm2. The value calculated using a wavefunctionnear the Hartree-Fock limit enlarged ≈ 10% by the Cl treatment.


Sign in / Sign up

Export Citation Format

Share Document