Selective, homonuclear pulse experiments in the Fourier transform mode: a study of 2′,3′-O-isopropylidene uridine

1977 ◽  
Vol 55 (6) ◽  
pp. 1045-1054 ◽  
Author(s):  
Klaus Bock ◽  
Roland Burton ◽  
Laurance D. Hall

A simple modification of a conventional Fourier transform nmr spectrometer (Varian XL-100) makes it feasible to apply selective, radiofrequency pulses at the resonance frequency of one, or more, proton resonances and to monitor the effects of those perturbations in the usual F.t. fashion. Experiments with 2′,3′-O-isopropylidene uridine are used to illustrate the utility of this technique in measurements of selective spin-lattice relaxation rates, to eliminate unwanted resonances by selective saturation or by selective partial relaxation, and to perform the pulse equivalent of a 1H–1H INDOR experiment.

Author(s):  
ASIF EQUBAL ◽  
Kan Tagami ◽  
Songi Han

In this paper, we report on an entirely novel way of improving the MAS-DNP efficiency by shaped μw pulse train irradiation for fast and broad-banded (FAB) saturation of the electron spin resonance. FAB-DNP achieved with Arbitrary Wave Generated shaped μw pulse trains facilitates effective and selective saturation of a defined fraction of the total electron spins, and provides superior control over the DNP efficiency under MAS. Experimental and quantum-mechanics based numerically simulated results together demonstrate that FAB-DNP significantly outperforms CW-DNP when the EPR-line of PAs is broadened by conformational distribution and exchange coupling. We demonstrate that the maximum benefit of FAB DNP is achieved when the electron spin-lattice relaxation is fast relative to the MAS frequency, i.e. at higher temperatures and/or when employing metals as PAs. Calculations predict that under short T<sub>1e </sub>conditions AWG-DNP can achieve as much as ~4-fold greater enhancement compared to CW-DNP.


1975 ◽  
Vol 30 (5) ◽  
pp. 571-582 ◽  
Author(s):  
C. J. Winscom

Abstract The behaviour of spin sublevel populations with time following periodic photo-excitation is ex-amined. The treatment is limited to conditions of magnetic field strength and temperature for which the spin lattice relaxation rates dominate the individual spin sublevel decay rates. The response of the system to three modes of excitation is considered: (i) continuous excitation using a time-independent intensity (ii) periodic rectangular pulse excitation and (iii) periodic waveform excitation. A convenient correspondence between the various forms of solutions is pointed out. The requirements of an experiment to determine spin-lattice relaxation rates in organic triplets at 77 K are discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander V. Skripov ◽  
Olga A. Babanova ◽  
Roman V. Skoryunov ◽  
Alexei V. Soloninin ◽  
Terrence J. Udovic

Abstract Polyhydroborate-based salts of lithium and sodium have attracted much recent interest as promising solid-state electrolytes for energy-related applications. A member of this family, sodium dicarba-nido-undecahydroborate Na-7,9-C2B9H12 exhibits superionic conductivity above its order-disorder phase transition temperature, ∼360 K. To investigate the dynamics of the anions and cations in this compound at the microscopic level, we have measured the 1H and 23Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates over the temperature range of 148–384 K. It has been found that the transition from the low-T ordered to the high-T disordered phase is accompanied by an abrupt, several-orders-of-magnitude acceleration of both the reorientational jump rate of the complex anions and the diffusive jump rate of Na+ cations. These results support the idea that reorientations of large [C2B9H12]− anions can facilitate cation diffusion and, thus, the ionic conductivity. The apparent activation energies for anion reorientations obtained from the 1H spin-lattice relaxation data are 314 meV for the ordered phase and 272 meV for the disordered phase. The activation energies for Na+ diffusive jumps derived from the 23Na spin-lattice relaxation data are 350 and 268 meV for the ordered and disordered phases, respectively.


1980 ◽  
Vol 58 (19) ◽  
pp. 2016-2023 ◽  
Author(s):  
Lawrence D. Colebrook ◽  
Laurance D. Hall

A general discussion is given of the determination of the proton spin–lattice relaxation rates of natural products, with particular emphasis on use of the null-point method which, for the systems studied here, gives identical results with those obtained via the conventional (and relatively time consuming) computational method.


Sign in / Sign up

Export Citation Format

Share Document