The acid-catalyzed oxido-reduction of spiroketals. Evidence for stereoelectronic control in hydride transfer to cyclic oxenium ions

1981 ◽  
Vol 59 (18) ◽  
pp. 2787-2802 ◽  
Author(s):  
Pierre Deslongchamps ◽  
Daryl D. Rowan ◽  
Normand Pothier

Tricyclic spiroketal 1 undergoes an acid-catalyzed oxidation–reduction reaction which yields equatorial bicyclic ether aldehyde 5 specifically. Similarly, spiroketals 2, 3, and 4 give equatorial bicyclic ether ketone 12. These results are interpreted by invoking an internal hydride transfer from an alcohol function to a cyclic oxenium ion which takes place with stereoelectronic control. The reduction of tricyclic ketals 1 and 22 with sodium cyanoborohydride under acidic conditions is also reported.

2021 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Gabriela Vasco ◽  
Gabriel Trueba

Opportunistic bacteria Pseudomonas aeruginosa is one of the major concerns as an etiological agent of nosocomial infections in humans. Many virulence factors used to colonize the human body are the same as those used by P. aeruginosa to thrive in the environment such as membrane transport, biofilm formation, oxidation/reduction reaction, among others. P. aeruginosa origin is mainly from the environment, the adaptation to mammalian tissues may follow a source-sink evolution model; the environment is the source of many lineages, some of them capable of adaptation to the human body. Some lineages may adapt to humans and go through reductive evolution in which some genes are lost.  The understanding of this process may be critical to implement better methods to control outbreaks in hospitals.


Heterocycles ◽  
1978 ◽  
Vol 9 (10) ◽  
pp. 1514
Author(s):  
A. S. Elina ◽  
I. S. Musatova ◽  
R. M. Titkova ◽  
E. A. Trifonova

Sign in / Sign up

Export Citation Format

Share Document