Kinetics of the reduction of nicotinonitrile cations by 1,4-dihydronicotinamides

1985 ◽  
Vol 63 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
John W. Bunting ◽  
John C. Brewer

The rates of reduction of a series of 1-(Z-benzyl)nicotinonitrile cations by a series of 1-(X-benzyl)-1,4-dihydronicotinamides have been studied at 25 °C in 20% CH3CN – 80% H2O (pH 7.0 (5 mM phosphate), ionic strength 1.0 (KCl)). Spectral studies indicate the formation of 1,4-dihydronicotinonitrile products, without the formation of the isomeric 1,2-dihydro- or 1,6-dihydro-nicotinamide intermediates. Second-order rate constants (k2) for these reductions are closely correlated with the Hammett σ constants for X and Z. Thus, for X = H, log k2 = 0.63σz − 1.05, while for Z = 4-CN, log k2 = −0.64σx − 0.65. The close correspondence between these ρx and ρz values indicates that charge neutralization on the nicotinonitrile cation exactly balances charge generation on the nicotinamide cation product in the rate-determining transition state. Thus the migrating hydrogen species is electrically neutral in the rate-determining transition state, which contrasts with the hydridic transition states previously reported in the reduction of isoquinolinium cations by 1,4-dihydronicotinamides. When 1-benzyl-4,4-dideuterio-1,4-dihydronicotinamide is used as the reductant, primary kinetic isotope effects of 3.0 and 2.7 are observed for the reduction of the 1-methylnicotinonitrile and 1-(4-cyanobenzyl)-nicotinonitrile cations, respectively. These data are evaluated in terms of the various mechanistic possibilities for hydride transfer.

2004 ◽  
Vol 82 (9) ◽  
pp. 1336-1340
Author(s):  
Xicai Huang ◽  
Andrew J Bennet

The aqueous ethanolysis reactions of adamantylideneadamantyl tosylate, -bromide, and -iodide (1-OTs, 1-Br and 1-I) were monitored as a function of ionic strength. Special salt effects are observed during the solvolyses of both homoallylic halides, but not in the case of the tosylate 1-OTs. The measured α-secondary deuterium kinetic isotope effects for the solvolysis of 1-Br in 80:20 and 60:40 v/v ethanol–water mixtures at 25 °C are 1.110 ± 0.018 and 1.146 ± 0.009, respectively. The above results are consistent with the homoallylic halides reacting via a virtual transition state in which both formation and dissociation of a solvent-separated ion pair are partially rate-determining. While the corresponding transition state for adamantylideneadamantyl tosylate involves formation of the solvent-separated ion pair.Key words: salt effects, kinetic isotope effect, internal return, solvolysis, ion pairs.


1996 ◽  
Vol 74 (12) ◽  
pp. 2528-2530 ◽  
Author(s):  
T.V. Pham ◽  
K.C. Westaway

The nitrogen and secondary α-hydrogen–deuterium kinetic isotope effects found for the SN2 reaction between thiophenoxide ion and benzyldimethylphenylammonium ion at different ionic strengths in DMF at 0 °C indicate that the structure of the transition state changes markedly with the ionic strength of the reaction mixture. In fact, a more reactant-like, more ionic, transition state is found at the higher ionic strength. This presumably occurs because a more ionic transition state is more stable in the more ionic solvent. Key words: transition state, ionic strength, secondary α deuterium kinetic isotope effects, nitrogen isotope effects, SN2.


1975 ◽  
Vol 53 (20) ◽  
pp. 3069-3074 ◽  
Author(s):  
Jan Bron

The corrections to rate constants for an harmonicity of vibrational excited states have been evaluated over the temperature range of 200–1100 K. The reaction O2 + X, where X is H or D, has been chosen as the model system. Only the influence of vibrational anharmonicity of the triatomic transition state has been determined. Two geometric shapes for the transition state, bent and isosceles configurations, have been investigated in detail by the bond order method.It is found that the correction can be large, depending upon the geometry and force field of the transition state and the temperature. The magnitude of the correction for anharmonicity of the vibrational excited states depends mainly, at a particular temperature, on the strength of the O—X bond in the transition state. In the case of a large correction, anharmonicity may lead to a nonlinear Arrhenius plot.Because of cancellation effects, the correction for anharmonicity of the excited vibrational states in kinetic isotope effects can be ignored in the lower temperature region. It has also been found that anharmonicity of the vibrational groundstate can explain unexpected large isotope effects.


2004 ◽  
Vol 69 (12) ◽  
pp. 2174-2182 ◽  
Author(s):  
Hyuck Keun Oh ◽  
Ji Young Oh ◽  
Dae Dong Sung ◽  
Ikchoon Lee

The aminolysis of S-aryl O-ethyl dithiocarbonates with benzylamines are studied in acetonitrile at -25.0 °C. The βX (βnuc) values are in the range 0.67-0.77 with a negative cross-interaction constant, ρXZ = -0.24, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles (XC6H4CH2ND2) are large, kH/kD = 1.41-1.97, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the EtO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.


Sign in / Sign up

Export Citation Format

Share Document