Anodic behaviour of limonene in low aqueous acetonitrile solutions of Cl−

1988 ◽  
Vol 66 (7) ◽  
pp. 1757-1762 ◽  
Author(s):  
J. A. Caram ◽  
M. E. Martins ◽  
E. G. Gros ◽  
C. M. Marschoff

The anodic behaviour of limonene on Pt electrodes was studied in LiCl solutions in acetonitrile with low water content. It was found that cis-6-acetamido-p-menth-1,8-diene is formed with acceptable yields. This compound is of interest as a potential intermediate for obtaining oxidation derivatives of limonene. Other products, among them the new compound 8-acetamido-2,4,8-trimethyl-4-chloromethyl-3-aza-bicyclo[3.3.1]non-2-ene, were identified. Reaction routes are proposed.

2016 ◽  
Vol 16 (10) ◽  
pp. 6091-6105 ◽  
Author(s):  
Steven T. Massie ◽  
Julien Delanoë ◽  
Charles G. Bardeen ◽  
Jonathan H. Jiang ◽  
Lei Huang

Abstract. Changes in the shape of cloud ice water content (IWC) vertical structure due to variations in Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depths (AODs), Ozone Monitoring Instrument (OMI) absorptive aerosol optical depths (AAODs), and Microwave Limb Sounder (MLS) CO (an absorptive aerosol proxy) at 215 hPa are calculated in the Tropics during 2007–2010 based upon an analysis of DARDAR IWC profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Analysis is performed for 12 separate regions over land and ocean, and carried out applying MODIS AOD fields that attempt to correct for 3-D cloud adjacency effects. The 3-D cloud adjacency effects have a small impact upon our particular calculations of aerosol–cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude. Similar analyses are carried out for three AAOD and three CO bins. On average, the vertical profiles of the means of the derivatives based upon the profile shapes over land and ocean are smaller for the profiles binned according to AAOD and CO values, than for the MODIS AODs, which include both scattering and absorptive aerosol. This difference in character supports the assertion that absorptive aerosol can inhibit cloud development.


2014 ◽  
Vol 53 (6) ◽  
pp. 2953-2962 ◽  
Author(s):  
Kadarkaraisamy Mariappan ◽  
Madhubabu Alaparthi ◽  
Gerald Caple ◽  
Vinothini Balasubramanian ◽  
Mariah M. Hoffman ◽  
...  

2016 ◽  
Author(s):  
Steven T. Massie ◽  
Julien Delanoe ◽  
Charles G. Bardeen

Abstract. Changes in the shape of cloud ice water content vertical structure due to aerosol variations are calculated in the Tropics during 2007–2010 based upon an analysis of DARDAR ice water content (IWC) profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Our analysis is performed for 12 separate regions over land and ocean, and carried out applying Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) fields that attempt to correct for 3D cloud adjacency effects. The 3D cloud adjacency effects have a small impact upon our calculations of aerosol-cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude.


1993 ◽  
Vol 328 ◽  
Author(s):  
T. F. Otero ◽  
E. Brillas ◽  
J. Carrasco ◽  
A. Figueras

ABSTRACTThe electrogeneration and electrodissolution of poly (SNS) have been improved by using aqueous acetonitrile solutions having a 1% (ν/ν) of water constant. Compact, adherent and thick films (until 0.4 Mg cm-2) were galvanostatically electrogenerated. The electrodeposited (oxidized) polymer is insoluble in 0.1 M L?CIO4 aqueous acetonitrile solution and solubilizes by cathodic reduction. Both, electrogeneration and electrodissolution, are faradaic processes. Those facts mimic electrodeposition and electroerosion of metals and their concomitant industrial applications. New technological possibilities using polymers in electrophotography, electroreprography, electropolishing, electro-erosion and electromachining are open through polymeric electrodissolution altogether to a new processible way, through the obtained solution, for the conducting polymers.


Sign in / Sign up

Export Citation Format

Share Document