thick films
Recently Published Documents


TOTAL DOCUMENTS

2834
(FIVE YEARS 242)

H-INDEX

68
(FIVE YEARS 8)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 265
Author(s):  
Luis A. Velosa-Moncada ◽  
Jean-Pierre Raskin ◽  
Luz Antonio Aguilera-Cortés ◽  
Francisco López-Huerta ◽  
Agustín L. Herrera-May

Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young’s modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young’s modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.


Author(s):  
Naoki Tanaka ◽  
Kyoko Matsuoka ◽  
Takahiro KOZAWA ◽  
Takuya Ikeda ◽  
Yoshitaka Komuro ◽  
...  

Abstract The dissolution behavior of a simple combination of poly(4-hydroxystyrene) (PHS) films and tetramethylammonium hydroxide (TMAH) aqueous solution was analyzed to gain a fundamental understanding of the effects of film thickness and alkaline concentration on the dissolution kinetics of chemically amplified resists (CARs). Films of four different thicknesses, from thick (approximately 900 nm) to thin (approximately 50 nm), were developed in 22 different developers of different concentrations. The dissolution behavior of each combination was observed using a quartz crystal microbalance (QCM). Differences in dissolution kinetics due to film thickness were observed even between relatively thick films such as 900- and 500-nm thick films in dilute developers. These differences were considered to be caused by the diffusion of the solution into the films. Thin films also showed characteristic behavior with dilution. This behavior was due to the interaction between the substrate and the films, unlike in the case of thick films.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 467
Author(s):  
Xinming Su ◽  
Alexander Tkach ◽  
Jerzy Krupka ◽  
Paula M. Vilarinho

The vital role of high-quality-factor (Q) high-frequency (f) dielectric resonators in the growing microwave telecommunication, satellite broadcasting and intelligent transport systems has long motivated the search for new, small size, and lightweight integrated components and packages, prepared by low cost and sustainable processes. One approach is replacing the currently used bulk ceramic dielectrics by thick films of low-sintering-temperature dielectrics fabricated by affordable processes. Here we demonstrate the fabrication of high-Q TiTe3O8 thick films directly on low loss Al2O3 substrates by electrophoretic deposition using sacrificial carbon layer. Nineteen-micrometre-thick TiTe3O8 films on Al2O3 sintered at 700 °C are found to have a relative permittivity εr of 32 and Q × f > 21,000 GHz. Being thus able to measure and provide for the first time the microwave dielectric properties of these films, our results suggest that TiTe3O8 films on Al2O3 substrates are suitable for microlayer microstrip array applications.


Author(s):  
María del Carmen Aguirre ◽  
Silvia E. Urreta ◽  
Paula G. Bercoff
Keyword(s):  

2021 ◽  
Author(s):  
Hu Chen ◽  
Yi Li ◽  
Zhao Hao ◽  
Xingyang Wu ◽  
Jianhua Zhang
Keyword(s):  

Author(s):  
Liwen Sang ◽  
Meiyong Liao ◽  
Masatomo Sumiya ◽  
Xuelin Yang ◽  
Bo Shen

Sign in / Sign up

Export Citation Format

Share Document