hydrophobic collapse
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 9)

H-INDEX

28
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5882
Author(s):  
Fabian Eisenreich ◽  
Tom H. R. Kuster ◽  
David van Krimpen ◽  
Anja R. A. Palmans

The use of organic photoredox catalysts provides new ways to perform metal-free reactions controlled by light. While these reactions are usually performed in organic media, the application of these catalysts at ambient temperatures in aqueous media is of considerable interest. We here compare the activity of two established organic photoredox catalysts, one based on 10-phenylphenothiazine (PTH) and one based on an acridinium dye (ACR), in the light-activated dehalogenation of aromatic halides in pure water. Both PTH and ACR were covalently attached to amphiphilic polymers that are designed to form polymeric nanoparticles with hydrodynamic diameter DH ranging between 5 and 11 nm in aqueous solution. Due to the hydrophobic side groups that furnish the interior of these nanoparticles after hydrophobic collapse, water-insoluble reagents can gather within the nanoparticles at high local catalyst and substrate concentrations. We evaluated six different amphiphilic polymeric nanoparticles to assess the effect of polymer length, catalyst loading and nature of the catalyst (PTH or ACR) in the dechlorination of a range of aromatic chlorides. In addition, we investigate the selectivity of both catalysts for reducing different types of aryl-halogen bonds present in one molecule, as well as the activity of the catalysts for C-C cross-coupling reactions. We find that all polymer-based catalysts show high activity for the reduction of electron-poor aromatic compounds. For electron-rich compounds, the ACR-based catalyst is more effective than PTH. In the selective dehalogenation reactions, the order of bond stability is C-Cl > C-Br > C-I irrespective of the catalyst applied. All in all, both water-compatible systems show good activity in water, with ACR-based catalysts being slightly more efficient for more resilient substrates.


2021 ◽  
Vol 22 (17) ◽  
pp. 9653
Author(s):  
Jiacheng Li ◽  
Chengyu Hou ◽  
Xiaoliang Ma ◽  
Shuai Guo ◽  
Hongchi Zhang ◽  
...  

Exploring the protein-folding problem has been a longstanding challenge in molecular biology and biophysics. Intramolecular hydrogen (H)-bonds play an extremely important role in stabilizing protein structures. To form these intramolecular H-bonds, nascent unfolded polypeptide chains need to escape from hydrogen bonding with surrounding polar water molecules under the solution conditions that require entropy-enthalpy compensations, according to the Gibbs free energy equation and the change in enthalpy. Here, by analyzing the spatial layout of the side-chains of amino acid residues in experimentally determined protein structures, we reveal a protein-folding mechanism based on the entropy-enthalpy compensations that initially driven by laterally hydrophobic collapse among the side-chains of adjacent residues in the sequences of unfolded protein chains. This hydrophobic collapse promotes the formation of the H-bonds within the polypeptide backbone structures through the entropy-enthalpy compensation mechanism, enabling secondary structures and tertiary structures to fold reproducibly following explicit physical folding codes and forces. The temperature dependence of protein folding is thus attributed to the environment dependence of the conformational Gibbs free energy equation. The folding codes and forces in the amino acid sequence that dictate the formation of β-strands and α-helices can be deciphered with great accuracy through evaluation of the hydrophobic interactions among neighboring side-chains of an unfolded polypeptide from a β-strand-like thermodynamic metastable state. The folding of protein quaternary structures is found to be guided by the entropy-enthalpy compensations in between the docking sites of protein subunits according to the Gibbs free energy equation that is verified by bioinformatics analyses of a dozen structures of dimers. Protein folding is therefore guided by multistage entropy-enthalpy compensations of the system of polypeptide chains and water molecules under the solution conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1083
Author(s):  
Jessica Guillerm ◽  
Jean-Marie Frère ◽  
Filip Meersman ◽  
André Matagne

The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.


2021 ◽  
Vol 57 (31) ◽  
pp. 3801-3804
Author(s):  
Dan Zhu ◽  
Jiang Li ◽  
Lianhui Wang ◽  
Qian Li ◽  
Lihua Wang ◽  
...  

Poly-adenine DNA shows strong adhesion to gold nanoparticles with high affinity via hydrophobic collapse.


2021 ◽  
Vol 8 (3) ◽  
pp. 291-306
Author(s):  
Salomón J. Alas-Guardado ◽  
◽  
Pedro Pablo González-Pérez ◽  
Hiram Isaac Beltrán ◽  
◽  
...  

<abstract> <p>Many of the simplistic hydrophobic-polar lattice models, such as Dill's model (called <bold>Model 1</bold> herein), are aimed to fold structures through hydrophobic-hydrophobic interactions mimicking the well-known hydrophobic collapse present in protein structures. In this work, we studied 11 designed hydrophobic-polar sequences, S<sub>1</sub>-S<sub>8</sub> folded in 2D-square lattice, and S<sub>9</sub>-S<sub>11</sub> folded in 3D-cubic lattice. And to better fold these structures we have developed <bold>Model 2</bold> as an approximation to convex function aimed to weight hydrophobic-hydrophobic but also polar-polar contacts as an augmented version of <bold>Model 1</bold>. In this partitioned approach hydrophobic-hydrophobic ponderation was tuned as <italic>α</italic>-1 and polar-polar ponderation as <italic>α</italic>. This model is centered in preserving required hydrophobic substructure, and at the same time including polar-polar interactions, otherwise absent, to reach a better folding score now also acquiring the polar-polar substructure. In all tested cases the folding trials were better achieved with <bold>Model 2</bold>, using <italic>α</italic> values of 0.05, 0.1, 0.2 and 0.3 depending of sequence size, even finding optimal scores not reached with <bold>Model 1</bold>. An important result is that the better folding score, required the lower <italic>α</italic> weighting. And when <italic>α</italic> values above 0.3 are employed, no matter the nature of the hydrophobic-polar sequence, banning of hydrophobic-hydrophobic contacts started, thus yielding misfolding of sequences. Therefore, the value of <italic>α</italic> to correctly fold structures is the result of a careful weighting among hydrophobic-hydrophobic and polar-polar contacts.</p> </abstract>


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryan R Cheng ◽  
Vinicius G Contessoto ◽  
Erez Lieberman Aiden ◽  
Peter G Wolynes ◽  
Michele Di Pierro ◽  
...  

Using computer simulations, we generate cell-specific 3D chromosomal structures and compare them to recently published chromatin structures obtained through microscopy. We demonstrate using machine learning and polymer physics simulations that epigenetic information can be used to predict the structural ensembles of multiple human cell lines. Theory predicts that chromosome structures are fluid and can only be described by an ensemble, which is consistent with the observation that chromosomes exhibit no unique fold. Nevertheless, our analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. Finally, we study the conformational changes associated with the switching of genomic compartments observed in human cell lines. The formation of genomic compartments resembles hydrophobic collapse in protein folding, with the aggregation of denser and predominantly inactive chromatin driving the positioning of active chromatin toward the surface of individual chromosomal territories.


2020 ◽  
Author(s):  
Animesh Mondal ◽  
Sandip Dolui ◽  
Sukhamoy Dhabal ◽  
Ashish Bhattacharjee ◽  
Nakul C Maiti

AbstractParkinson’s disease (PD) is linked to α-synuclein (aS) aggregation and deposition of amyloid in the substantia nigra region of the brain tissues. Recent reports suggested that oligomeric assembly structure could be neurotoxic to neuronal cells. In the current investigation we produced two distinct classes of aS oligomers and link the protein conformation state and stability to neuronal cell toxicity. Natural oligomers (NO) enriched with alpha-helical folds are produced in storage of aS at below −20°C for 7 days. Induced oligomer (IO), often observed in the aggregation pathway of aS were made incubating the protein solution at 37°C. Natural oligomers remained stable and did not transform into β-sheet rich amyloid fiber and exhibited higher toxicity (80% cell death) compared to induced oligomers. Natural oligomers were ovular shape and the size ranged between 4-5.5 nm. It maintained significant number (∼ 60%) of residues in α-helical conformational space. However, initiation of hydrophobic zipping with beta sheet conformation was evidenced in induced oligomer (IO) and a lesser number residues (45%) remained with preference to α-helical secondary structure. Hydrophobic collapse leads the transformation of IO into thermodynamically most stable β-sheet rich amyloid fibril. Molten globule like secondary structure stabilized by H-bonding in natural oligomers caused enhanced stability and cellular toxicity compared to induced oligomer. Thus off-pathway/natural oligomers could be plausible reason of neuronal cell death and possible cause of Parkinson’s disease.


2020 ◽  
Author(s):  
Serdal Kirmizialtin ◽  
Felicia Pitici ◽  
Alfredo E Cardenas ◽  
Ron Elber ◽  
D. Thirumalai

AbstractExtensive experimental studies on the folding of Cytochrome c (Cyt c) make this small protein an ideal target for atomic detailed simulations for the purposes of quantitatively characterizing the structural transitions and the associated time scales for folding to the native state from an ensemble of unfolded states. We use previously generated atomically detailed folding trajectories by the Stochastic Difference Equation in Length (SDEL) to calculate the time-dependent changes in the Small Angle X-ray scattering (SAXS) profiles. Excellent agreement is obtained between experiments and simulations for the time dependent SAXS spectra, allowing us to identify the structures of the folding intermediates, which shows that Cyt c reaches the native state by a sequential folding mechanism. Using the ensembles of structures along the folding pathways we show that compaction and the sphericity of Cyt c change dramatically from the prolate ellipsoid shape in the unfolded state to the spherical native state. Our data, which provides unprecedented quantitative agreement with all aspects of time-resolved SAXS experiments, shows that hydrophobic collapse and amide group protection coincide on the 100 microseconds time scale, which is in accord with ultrafast Hydrogen/Deuterium exchange studies. Based on these results we propose that compaction of polypeptide chains, accompanied by dramatic shape changes, is a universal characteristic of globular proteins, regardless of the underlying folding mechanism.


2D Materials ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 035002
Author(s):  
Stefan Wakolbinger ◽  
Fabian R Geisenhof ◽  
Felix Winterer ◽  
Samuel Palmer ◽  
Juri G Crimmann ◽  
...  

2018 ◽  
Author(s):  
Mrinmoy Mukherjee ◽  
Jagannath Mondal

AbstractOsmolytes’ mechanism of protecting proteins against denaturation is a longstanding puzzle, further complicated by the complex diversities inherent in protein sequences. An emergent approach in understanding osmolytes’ mechanism of action towards biopolymer has been to investigate osmolytes’ interplay with hydrophobic interaction, the major driving force of protein folding. However, the crucial question is whether all these protein-stabilizing osmolytes display a single unified mechanism towards hydrophobic interactions. By simulating the hydrophobic collapse of a macromolecule in aqueous solutions of two such osmoprotectants, Glycine and Trimethyl N-oxide (TMAO), both of which are known to stabilize protein’s folded conformation, we here demonstrate that these two osmolytes can impart mutually contrasting effects towards hydrophobic interaction. While TMAO preserves its protectant nature across diverse range of polymer-osmolyte interactions, glycine is found to display an interesting cross-over from being a protectant at weaker polymer-osmolyte interaction to a denaturant of hydrophobicity at stronger polymer-osmolyte interactions. A preferential-interaction analysis reveals that a subtle balance of conformation-dependent exclusion/binding of osmolyte molecules from/to the macromolecule holds the key to overall heterogenous behavior. Specifically, TMAO’s consistent stabilization of collapsed configuration of macromolecule is found to be a result of TMAO’s preferential binding to polymer via hydrophobic methyl groups. However, polar Glycine’s cross-over from being a protectant to denaturant across polymer-osmolyte interaction is rooted in its switch from preferential exclusion to preferential binding to the polymer with increasing interaction. Overall, by highlighting the complex interplay of osmolytes with hydrophobic interaction, this work puts forward the necessity of quantitative categorization of osmolytes’ action in protein.


Sign in / Sign up

Export Citation Format

Share Document