Reactions of nitriles with binuclear rhodium hydrides. The stepwise reduction of a carbon–nitrogen triple bond at two metal centres

1992 ◽  
Vol 70 (9) ◽  
pp. 2381-2389 ◽  
Author(s):  
Michael D. Fryzuk ◽  
Warren E. Piers ◽  
Steven J. Rettig

The reaction of simple nitriles, R′CN (R′ = CH3, Ph, o-tol) with the electron-rich binuclear rhodium hydride derivatives [(R2PCH2CH2PR2)Rh]2(μ-H)2 (R = Pri: [(dippe) Rh]2(μ-H)2; R = OPri: [(dipope)Rh]2(μ-H)2) results in the formation of alkylideneimido derivatives [(R2PCH2CH2PR2)Rh]2(μ-H)(μ-N=CHR′), apparently by insertion of the nitrile moiety into a bridging hydride bond; this was confirmed by the reaction of nitriles with the dideuteride [(dippe)Rh]2(μ-D)2, which resulted in the formation of [(dippe)Rh]2(μ-D)(μ-N=CHR′). Further reduction can take place by addition of H2 to generate the corresponding amide hydride derivatives [(dippe)Rh]2(μ-H)(μ-NHCH2R′); this represents an overall stoichiometric reduction of a nitrile to a coordinated amide at a binuclear centre. These same amido-hydride complexes can be accessed by addition of amine to the starting binuclear rhodium hydride derivatives. The X-ray structure of [(Pri2PCH2CH2PPri2)Rh]2(μ-H)(μ-N=CHCH3) was undertaken to confirm the structure of these particular intermediates. Crystals of this material are monoclinic, a = 19.036(2), b = 15.139(1), c = 13.604(1) Å, β = 104.119(7)°, Z = 4, space group P21/c. The structure was solved by heavy atom methods and was refined by full-matrix least-squares procedures to R = 0.038 and Rw = 0.041 for 5814 reflections with I ≥ 3σ(I).


1986 ◽  
Vol 64 (2) ◽  
pp. 373-386 ◽  
Author(s):  
Gregory A. Banta ◽  
Brenda M. Louie ◽  
Emmanuel Onyiriuka ◽  
Steven J. Rettig ◽  
Alan Storr

The reactions of the LMo(CO)3− ions (L = MeGapz3, HBpz3, Me2Gapz(OCH2CH2NMe2)) with [Cu(PPh3)Cl]4 and Rh(PPh3)3Cl have yielded complexes with Mo—Cu and Mo—Rh bonds. The X-ray crystal structures of two such complexes have been determined. Crystals of [MeGapz3]Mo(CO)3Cu(PPh3) are monoclinic, a = 17.071(2), b = 16.738(1), c = 23.641(3) Å, β = 104.899(6)°, Z = 8, space group P21/n, and those of [MeGapz3]Mo(CO)3Rh(PPh3)2, are triclinic, a = 12.519(3), b = 17.182(4), c = 12.071(2) Å, α = 105.02(1), β = 109.87(1), γ = 97.10(2)°, Z = 2, space group [Formula: see text]. Both structures were solved by conventional heavy atom methods and were refined by full-matrix least-squares procedures to R = 0.040 and Rw = 0.035 for 6296 reflections with I ≥ 2σ(I) and R = 0.036 and Rw = 0.037 for 5642 reflections with I ≥ 3σ(I), respectively. The former complex provides a rare example of a 3:3:1, or capped octahedral structure, with a short (mean) Mo—Cu distance of 2.513(9) Å. The latter compound displays one terminal and two bridging CO ligands and a Mo—Rh distance of 2.6066(5) Å.



1985 ◽  
Vol 63 (2) ◽  
pp. 503-508 ◽  
Author(s):  
Brenda M. Louie ◽  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Details of the synthesis and physical properties of [Me2Ga(3,5-Me2pz)2]Rh(CO)PPh3 are given. Crystals of [dimethylbis(3,5-dimethyl-1-pyrazolyl)gallato-N,N′](triphenylphosphine)carbonylrhodium(I) – toluene (1:1) are triclinic, a = 10.690(2), b = 12.928(2), c = 13.998(2) Å, α = 77.44(1), β = 83.50(1), γ = 72.70(1)°, Z = 2, space group [Formula: see text]. The structure was solved by conventional heavy-atom methods and was refined by full-matrix least-squares procedures to R = 0.039 and Rw = 0.048 for 5987 reflections with I ≥ 3σ(I). The Rh(I) is in a distorted square planar environment with Rh—N = 2.090(3) and 2.097(2), Rh—CO = 1.815(4), and Rh—P = 2.2700(8) Å. The central six-membered RhGaN4 ring has a steep boat conformation with a [Formula: see text] separation of 3.3819(4) Å.



1988 ◽  
Vol 66 (3) ◽  
pp. 355-358 ◽  
Author(s):  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Crystals of [dimethyl(1-pyrazolyl)(2-pyridylmethoxy)gallato-N2,O,N3](η3-allyl)dicarbonylmolybdenum(II) are triclinic, a = 9.632(2), b = 9.798(2), c = 10.255(2) Å, α = 80.16(1), β = 87.38(1), γ = 81.75(1)°, Z = 2, space group [Formula: see text]. The structure was solved by conventional heavy-atom methods and was refined by full-matrix least-squares procedures to R = 0.033 and Rw = 0.037 for 3000 reflections with I ≥ 3σ(I). The molecule has pseudo-octahedral coordination geometry with the tridentate [Me2Ga(N2C3H3)(OCH2(C5H4N))]− ligand facially coordinated and the η3-allyl ligand occupying one coordination site trans to the pyridyl nitrogen atom. Important bond lengths are Mo—O = 2.219(2), Mo—N(py) = 2.212(3), Mo—N(pz) = 2.232(2), Mo—C(allyl) = 2.290(4), 2.189(4), 2.341(4), Mo—CO (trans to O) = 1.928(4), and Mo—CO (trans to N) = 1.952(4) Å.



1994 ◽  
Vol 72 (4) ◽  
pp. 1154-1161 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Steven J. Rettig ◽  
James Trotter

Three 2-(hydroxyamino)alkanols have been reacted with sterically hindered arylboronic acids, ArB(OH)2. When Ar = o-tolyl, 1:2 condensates having bicyclic structures are formed but when Ar = mesityl (2,4,6-(CH3)3C6H2), 1:1 condensates having six-membered cycloboronate structures result. These 1:1 condensates represent the first examples of N-unsubstituted 1,3-dioxa-4-aza-2-boracyclohexane derivatives. An X-ray analysis of one example provides unambiguous proof of the structure. Crystals of 2-mesityl-6,6-pentamethylene-1,3-dioxa-4-aza-2-boracyclohexane, 3c, are monoclinic, a = 11.076(9), b = 23.94(2), c = 13.414(9) Å, β = 109.40(5)°, Z = 8, space group P21/n. The structure was solved by direct methods and refined by full-matrix least-squares procedures to R = 0.051 and Rw = 0.058 for 2037 reflections with I ≥ 3σ(F2).



1998 ◽  
Vol 51 (3) ◽  
pp. 219 ◽  
Author(s):  
Ian R. Whittall ◽  
Mark G. Humphrey ◽  
David C. R. Hockless

The structures of Ni(C≡CR)(PPh3)(η-C5H5) (R = Ph (1), C6H4-4-NO2 (2), 4-C6H4C6H4-4′-NO2 (3), (E)-4-C6H4CH=CHC6H4-4′-NO2 (4), 4-C6H4C≡CC6H4-4′-NO2 (5), 4-C6H4N=CHC6H4-4′-NO2 (6)) have been determined by single-crystal X-ray diffraction studies, refining by full-matrix least-squares analysis. For (1), crystals are triclinic, space group P-1, with a 10·094(2), b13·429(3), c 18·835(5) Å,α 103·24(2), β 91·50(2), γ 90·10(2)°, Z 4, 5844 unique reflections (595 parameters), converging at R 0·033 and Rw 0·024. For (2), crystals are orthorhombic, space group Pna21, with a 16·799(2), b 8·681(2), c 17·485(2) Å, Z 4, 1774 unique reflections (325 parameters), converging at R 0·031 and Rw 0·029. For (3), crystals are monoclinic, space group P 21/c, with a 11·140(3), b 18·282(4), c 15·296(2) Å, β 105·18(2)°, Z 4, 3132 unique reflections (397 parameters), converging at R 0·039 and Rw 0·024. For (4), crystals are monoclinic, space group P 21/n, with a 12·929(7), b 16·953(8), c 15·601(7) Å, β 112·55(3), Z 4, 3023 unique reflections (397 parameters), converging at R 0·039 and Rw 0·025. For (5), crystals are monoclinic, space group P 21/n, with a 12·710(5), b 16·882(3), c 15·693(4) Å, β 111·37(3)°, Z 4, 3216 unique reflections (397 parameters), converging at R 0·035 and Rw 0·030. For (6), crystals are monoclinic, space group P 21/n, with a 12·594(1), b 16·936(2), c 15·611(1) Å, β 112·476(5)°, Z 4, 3564 unique reflections (397 parameters), converging at R 0·038 and Rw 0·041. For structurally characterized 18-electron (cyclopentadienyl)nickel(II) acetylide complexes, statistically insignificant decreases in the average Ni-C(1) distance and trans influence and an increase in the average C(1)-C(2) parameter are observed on introduction of an acceptor substituent at the alkynyl ligand.



1977 ◽  
Vol 30 (10) ◽  
pp. 2195 ◽  
Author(s):  
RM Christie ◽  
RW Rickards ◽  
KJ Schmalzl ◽  
D Taylor

Alkaline chlorination of the 4-alkyl-2,6-dichlorophenols (2b) and (2c) proceeds through ring contraction and halolactonization to form the 4α- alkyl-2,2,5α-trichloro-1α,3α-dihydroxycyclopentane-1,4-carbolactones (4b) and (4c). Under similar conditions, 2,4,6-trichlorophenol affords the analogous 2,2,4α,5α-tetrachloro-1α,3α-dihydroxycyclopentane-1,4- carbolactone (4a) in low yield, in addition to the Hantzsch acid (3a) as the major product. The acid (3a) upon further treatment undergoes chloro-lactonization to give the lactone (4a). The structures of the lactones (4b) and (4c) follow from spectroscopic comparison with (4a), the structure of which has been established by X-ray diffraction (C6H4Cl4O4 orthorhombic a 13.485(1), b 12.348(1), c 11.371(1) Ǻ, space group Pccn, Z 8, solved by direct methods and refined by block-diagonal and full-matrix least squares to R 0.031, Rw 0.043 for 1313 unique counter data with I/σ(I) ≥ 3.0).



1975 ◽  
Vol 53 (8) ◽  
pp. 1139-1143 ◽  
Author(s):  
Robert Melanson ◽  
Joseph Hubert ◽  
F. D. Rochon

The molecular and crystal structure of the [Pt(dien)Br]Br complex (dien = diethylenetriamine) has been studied by X-ray diffraction. The compound belongs to the orthorhombic Pca21 space group and the cell parameters are: a = 14.211, b = 4.940, c = 13.450 Å, and Z = 4. The refinement of the positional and anisotropic thermal parameters, carried out by full matrix least squares calculations, converged to R = 0.039 and Rw = 0.036.The coordination around the platinum atom is planar. The crystal consists of alternate layers of [Pt(dien)Br]+ cations and Br− ions parallel to the ac plane.



1978 ◽  
Vol 31 (9) ◽  
pp. 1927 ◽  
Author(s):  
DL Kepert ◽  
CL Raston ◽  
NK Roberts ◽  
AH White

The crystal structure of the title compound, [Tl(S2CNEt2)3], has been determined by single-crystal X-ray diffraction methods at 295 K and refined by full-matrix least squares to a residual of 0.050 for 2517 'observed' reflections. Crystals are monoclinic, with space group A2/a, a 14.789(7), b 10.428(4), c 18.207(9) Ǻ, β 118.11(4)°, Z 4, and are isostructural with those of the previously determined gallium and indium analogues, the molecule having 2 symmetry with <Tl-S> 2.666 Ǻ. As in the dimethyl/thallium analogue, the departure of the TlS6 core symmetry from 3 is large and is examined in terms of electron-pair repulsion theory.



1988 ◽  
Vol 41 (5) ◽  
pp. 641 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structure of mer-(Pme2Ph)3Cl-cis-H2IrIII (1) has been determined by single-crystal X-ray and neutron diffraction analyses. Crystals are monoclinic, space group P21, with a 11.476(4), b 14.069(5), c 8.286(3)Ǻ, β 92.45(1)° and Z 2. Full-matrix least-squares analyses converged 0.022 for 7773 X-ray data and R(F2) = 0.062 for 1538 neutron data. Ir -H [1.557(11)Ǻ trans to Cl, 1.603(10) Ǻ trans to P] and Ir -P distances [2.292(1)Ǻ trans to P, 2.328(1)Ǻ trans to H] both exhibit trans lengthening effects. Consistent with the increased hydride content the Ir -P distances in (1) are c. 0.04 Ǻ shorter than for the corresponding bonds in its dichloro monohydrido analogues and c. 0.08 Ǻ shorter than those in the trichloride . In contrast Ir-Cl [2.505(1)Ǻ] is not significantly different to the corresponding distance (2.504 Ǻ av.) in mer -(PMe2Ph)3-cis-Cl2HIrIII.



Author(s):  
E. M. Walitzi ◽  
F. Walter

AbstractThe crystal structure of the basaltic clino-amphibole magnesio-hastingsite was refined from three-dimensional photographic X-ray data by a full matrix least-squares method in the space group



Sign in / Sign up

Export Citation Format

Share Document