Male reproductive success and pedigree error in red spruce open-pollinated and polycross mating systems

2008 ◽  
Vol 38 (7) ◽  
pp. 1742-1749 ◽  
Author(s):  
T. K. Doerksen ◽  
C. M. Herbinger

Open-pollinated and polycross mating systems are widely used in forest genetics and breeding to quickly, simply, and inexpensively generate progenies assumed to be related as half-sibs (coefficient of relationship, r = 0.25) from a random mating population. However, nonrandom mating, such as unequal male reproductive success (RS) or selfing, can increase the genetic correlation among offspring, and thus, genetic variance and heritability are overestimated. Conversely, pedigree errors will cause additive genetic variance and heritability to be underestimated. Unequal male reproductive success and three types of potential pedigree errors (volunteers, mishandled maternal identities, and foreign pollen) were detected in operational open-pollinated and polycross red spruce ( Picea rubens Sarg.) progeny tests, through paternity testing using microsatellite (simple sequence repeat) DNA markers. The potential impact of unequal RS and pedigree errors on quantitative genetic parameters is discussed. Paternity and parentage analyses could be used to reconstruct the pedigree of any plantation consisting of sibships, where candidate parents (e.g., members of seed orchard) can be identified. This offers an alternative to traditional progeny testing for estimation of quantitative genetic parameters.


2021 ◽  
Author(s):  
Antoine Fraimout ◽  
Zitong Li ◽  
Mikko J. Sillanpää ◽  
Pasi Rastas ◽  
Juha Merilä

ABSTRACTAdditive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most wild animal populations. Using estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci, we estimated quantitative genetic parameters for traits known to be under directional natural selection in nine-spined sticklebacks (Pungitius pungitius) and compared these to traditional pedigree-based estimators. Using four different datasets, with varying sample sizes and pedigree complexity, we further assessed the performance of different Genomic Relationship Matrices (GRM) to estimate additive and dominance variance components. Large variance in IBD relationships allowed accurate estimation of genetic variance components, and revealed significant heritability for all measured traits, with negligible dominance contributions. Genome-partitioning analyses revealed that all traits have a polygenic basis and are controlled by genes at multiple chromosomes. The results demonstrate how large full-sib families of highly fecund vertebrates can be used to obtain accurate estimates quantitative genetic parameters to provide insights on genetic architecture of quantitative traits in non-model organisms from the wild. This approach should be particularly useful for studies requiring estimates of genetic variance components from multiple populations as for instance when aiming to infer the role of natural selection as a cause for population differentiation in quantitative traits.



Evolution ◽  
2012 ◽  
Vol 66 (8) ◽  
pp. 2411-2426 ◽  
Author(s):  
Katie V. Stopher ◽  
Craig A. Walling ◽  
Alison Morris ◽  
Fiona E. Guinness ◽  
Tim H. Clutton‐Brock ◽  
...  


2013 ◽  
Vol 9 (6) ◽  
pp. 20130762 ◽  
Author(s):  
Z. Valentina Zizzari ◽  
Nico M. van Straalen ◽  
Jacintha Ellers

Males employ complex strategies to optimize their reproductive success when faced with male–male competition; for instance, they can adjust the ejaculate characteristics. In copulating species, a male may also strategically adjust his ejaculate expenditure according to female quality. Quantifying the relative contribution of ejaculate plasticity in male reproductive success is often difficult, especially when females exert postcopulatory cryptic choice. One way to quantify the functional significance of ejaculate plasticity is offered by mating systems in which the reproductive partners do not meet each other during insemination. In the collembolan Orchesella cincta , males deposit their ejaculates (spermatophores) irrespective of the presence of females. We tested whether Orchesella males adjust spermatophore number when exposed to the presence of another male and whether changes in spermatophore production influence female choice. We found that Orchesella males display plasticity in spermatophore allocation. Males decreased the spermatophore number when exposed to a rival male. Moreover, females preferentially took up spermatophores of males that were exposed to a competitor. The reduction in spermatophore number suggests, besides an adaptive response to the risk of ejaculate removal by rival males, an optimization strategy owing to the costs of more attractive spermatophores.



Evolution ◽  
2009 ◽  
Vol 63 (4) ◽  
pp. 1051-1067 ◽  
Author(s):  
Joseph D. DiBattista ◽  
Kevin A. Feldheim ◽  
Dany Garant ◽  
Samuel H. Gruber ◽  
Andrew P. Hendry


Evolution ◽  
1996 ◽  
Vol 50 (3) ◽  
pp. 1083 ◽  
Author(s):  
Cynthia C. Bennington ◽  
James B. McGraw


Crop Science ◽  
2005 ◽  
Vol 45 (1) ◽  
pp. cropsci2005.0098 ◽  
Author(s):  
Adel H. Abdel-Ghani ◽  
Heiko K. Parzies ◽  
Salvatore Ceccarelli ◽  
Stefania Grando ◽  
Hartwig H. Geiger


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1961-1972 ◽  
Author(s):  
Stuart C Thomas ◽  
William G Hill

Abstract Previous techniques for estimating quantitative genetic parameters, such as heritability in populations where exact relationships are unknown but are instead inferred from marker genotypes, have used data from individuals on a pairwise level only. At this level, families are weighted according to the number of pairs within which each family appears, hence by size rather than information content, and information from multiple relationships is lost. Estimates of parameters are therefore not the most efficient achievable. Here, Markov chain Monte Carlo techniques have been used to partition the population into complete sibships, including, if known, prior knowledge of the distribution of family sizes. These pedigrees have then been used with restricted maximum likelihood under an animal model to estimate quantitative genetic parameters. Simulations to compare the properties of parameter estimates with those of existing techniques indicate that the use of sibship reconstruction is superior to earlier methods, having lower mean square errors and showing nonsignificant downward bias. In addition, sibship reconstruction allows the estimation of population allele frequencies that account for the relationships within the sample, so prior knowledge of allele frequencies need not be assumed. Extensions to these techniques allow reconstruction of half sibships when some or all of the maternal genotypes are known.





2001 ◽  
Vol 120 (1) ◽  
pp. 49-56 ◽  
Author(s):  
B. I. G. Haussmann ◽  
D. E. Hess ◽  
B. V. S. Reddy ◽  
S. Z. Mukuru ◽  
M. Kayentao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document