Corrigendum: Silviculture that sustains: the nexus between silviculture, frequent prescribed fire, and conservation of biodiversity in longleaf pine forests of the southeastern United States

2010 ◽  
Vol 40 (3) ◽  
pp. 596-596 ◽  
Author(s):  
R.J. Mitchell ◽  
J.K. Hiers ◽  
J.J. O'Brien ◽  
S.B. Jack ◽  
R.T. Engstrom
2013 ◽  
Vol 6 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Stephen F. Enloe ◽  
Nancy J. Loewenstein ◽  
David W. Held ◽  
Lori Eckhardt ◽  
Dwight K. Lauer

AbstractCogongrass [Imperata cylindrica (L.) Beauv.] is a warm-season, rhizomatous grass native to southeast Asia that has invaded thousands of hectares in the southeastern United States. Its negative impacts on pine forests have been well documented, and aggressive control is widely recommended. Although repeated herbicide treatments are effective for suppression, integrated strategies of prescribed burning coupled with herbicide treatment and revegetation are lacking in pine systems. In particular, longleaf pine forests, which are typically open, fire-dependent, communities, are highly susceptible to cogongrass, which is a pyrogenic species. To address management goals for cogongrass control and herbaceous restoration in longleaf pine forests better, field studies were conducted in southwestern Alabama from 2010 to 2012. Two longleaf pine forests with near-monotypic stands of cogongrass in the understory were selected for study. Treatments included combinations of winter prescribed fire, spring and fall glyphosate herbicide treatments, and seeding a mix of native, herbaceous species. Data were collected for three growing seasons following study initiation, and included seasonal herbaceous species cover and final cogongrass shoot and rhizome biomass. Species richness and diversity were calculated and analyzed to ascertain treatment effects over the duration of the study. Burning slightly improved cogongrass control with glyphosate, but had no effect on total cover, species richness, or species diversity. Three glyphosate treatments reduced total vegetative cover and nearly eliminated cogongrass cover, shoot, and rhizome biomass. Glyphosate and glyphosate + seeding also increased herbaceous species richness and diversity. However, aboveground productivity in treated plots was significantly lower than productivity in the untreated control, which was almost exclusively cogongrass. These studies indicate that glyphosate and integrated strategies utilizing glyphosate and seeding are very useful for cogongrass management and increasing herbaceous species richness and diversity in longleaf pine.


2006 ◽  
Vol 36 (11) ◽  
pp. 2724-2736 ◽  
Author(s):  
R J Mitchell ◽  
J K Hiers ◽  
J J O'Brien ◽  
S B Jack ◽  
R T Engstrom

The longleaf pine (Pinus palustris Mill.) forest ecosystems of the US southeastern Coastal Plain, among the most biologically diverse ecosystems in North America, originally covered over 24 × 106 ha but now occupy less than 5% of their original extent. The key factor for sustaining their high levels of diversity is the frequent application of prescribed fire uninterrupted in time and space. Pine fuels, critical to application of fire and regulated by canopy distribution, provide the nexus between silviculture and fire management in this system. Typical silvicultural approaches for this type were, in large part, developed to maximize the establishment and growth of regeneration as well as growth and yield of timber, with much less regard to how those practices might influence the ability to sustain prescribed burning regimes or the associated biodiversity. However, many landholdings in the region now include conservation of biodiversity as a primary objective with sustained timber yield as an important but secondary goal. This review synthesizes the literature related to controls of biodiversity for longleaf pine ecosystems, and silvicultural approaches are compared in their ability to sustain natural disturbance such as fire and how closely they mimic the variation, patterns, and processes of natural disturbance regimes while allowing for regeneration.


Ecosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
George Matusick ◽  
Stephen J. Hudson ◽  
Caleb Z. Garrett ◽  
Lisa J. Samuelson ◽  
James D. Kent ◽  
...  

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
David S. Mason ◽  
Marcus A. Lashley

AbstractThe idea that not all fire regimes are created equal is a central theme in fire research and conservation. Fire frequency (i.e., temporal scale) is likely the most studied fire regime attribute as it relates to conservation of fire-adapted ecosystems. Generally, research converges on fire frequency as the primary filter in plant community assembly and structure, which is often critical to conservation goals. Thus, conservation success is commonly linked to fire frequency in fire regimes.The spatial scale of fire may also be vital to conservation outcomes, but this attribute is underrepresented in the primary literature. In our global, contemporary literature search, we found 37 published syntheses concerning the effects of prescribed fire in conservation over the last decade. In those syntheses, only 16% included studies that reported data-based inferences related to the spatial scale of the fire, whereas 73% included discussion of empirical studies on the temporal scale. Only one of the syntheses discussed studies that explicitly tested the effects of spatial extent, and none of those studies were experiments manipulating spatial scale. Further, understanding spatial-scale-dependent patterns may be relevant because two databases of fire-occurrence data from the United States indicated that spatial scale among lightning-ignited and prescribed fires may have been mismatched over the past few decades.Based on a rich ecological literature base that demonstrates pervasive scale-dependent effects in ecology, spatial-scale-dependent relationships among prescribed fire regimes and conservation outcomes are likely. Using examples from the southeastern United States, we explored the potential for scale-dependent ecological effects of fire. In particular, we highlighted the potential for spatial scale to (a) influence wildlife populations by manipulating the dispersion of habitat components, and (b) modulate plant community assembly and structure by affecting seed dispersal mechanics and spatial patterns in herbivory. Because spatial-scale-dependent outcomes are understudied but likely occurring, we encourage researchers to address the ecological effects of spatial scale in prescribed-fire regimes using comparative and manipulative approaches.


Sign in / Sign up

Export Citation Format

Share Document