shortleaf pine
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Casey Iwamoto ◽  
Courtney Siegert ◽  
Joshua Granger ◽  
Krishna Poudel ◽  
Adam Polinko

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1739
Author(s):  
Carl Nordman ◽  
Don Faber-Langendoen ◽  
Joanne Baggs

Open woodlands dominated by shortleaf pine (Pinus echinata Mill.) and oak are historically an important component of the landscape across the southeastern United States. These ecosystems support numerous wildlife species, many of which have declined in recent years as the amount and condition of their habitat have declined. Land managers and private landowners need guidance on how to efficiently and accurately quantify the condition and wildlife habitat value of the pine stands that they manage. Here we provide a set of rapid assessment metrics, based on NatureServe’s ecological integrity assessment (EIA) method, to (a) identify exemplary tracts that provide the best habitat for key wildlife species, and (b) monitor restoration efforts to assess progress toward the improved quality of existing tracts. To ensure an ecologically appropriate scaling of metrics, we distinguished six types of shortleaf pine–oak woodland: A.—Interior Highlands shortleaf pine–oak (including A.1—shortleaf pine–oak forest and woodlands; A.2—shortleaf pine–bluestem woodlands); B—montane longleaf pine–shortleaf pine woodlands; C—southern Appalachian pine–oak woodlands; D—West Gulf coastal plain shortleaf pine–oak woodlands; and E—southeast coastal plain and Piedmont shortleaf pine–oak woodlands. We relied on a narrative conceptual model and peer review-based indicator selection to identify a core set of 15 stand-level metrics (two were optional). Individual assessment points (thresholds) and ratings (Excellent, Good, Fair, and Poor) were developed that were sensitive to the distinct attributes of each of the five shortleaf pine–oak and Appalachian pine–oak types. Values for the metrics can all be collected using rapid field methods, such as using basal area prisms and ocular (visual) estimates of cover. Protocols for the consistent application of these EIA methods are provided. A case study is presented from the Cherokee National Forest in Tennessee. These methods provide improved and rapid EIA metrics for all shortleaf pine–oak ecosystems in the southeastern US to help guide conservation-minded landowners in assessing the biodiversity and priority wildlife values of shortleaf pine–oak and southern Appalachian pine–oak ecosystems.


2021 ◽  
Author(s):  
Arun Regmi ◽  
Donald L Grebner ◽  
John L Willis ◽  
Robert K Grala

Abstract Intensive pine silviculture has become the dominant management paradigm in the southeastern United States. Although productivity has been substantially increased by the combination of cultural, silvicultural, and genetic advancements, wood quality is sometimes sacrificed in intensive silviculture. Extending the optimal rotation allows trees to grow more timber, which may result in the production of better quality sawtimber; however, landowners may require incentives to do so. We simulated loblolly, slash, shortleaf, and longleaf pine for growth and yield using the Forest Vegetation Simulator (FVS) to determine sawtimber price premiums landowners would require to offset the costs associated with delaying the final harvest by 10 to 30 years in even-aged systems. Required incentives increased with the length of harvesting delay beyond the financially optimal rotation age. On medium productivity sites, landowners would be willing to delay the final harvest by 10 years for sawtimber price premiums of $5.06/ton (20.47%) for loblolly, $5.34/ton (21.6%) for slash, $4.56/ton (18.45%) for longleaf, and $6.71/ton (27.14%) shortleaf pine, respectively. Harvest delays of 10 to 20 years were financially justifiable, whereas extensions exceeding 30 years were prohibitively costly for all species. Delaying the optimal harvest could benefit landowners by generating a premium price for their sawtimber while providing important ecosystem services. Study Implications The study findings will provide a baseline resource for forest landowners and managers who are interested in growing higher-quality and larger-diameter pine sawtimber to longer rotation ages to obtain a premium price. The results will also be helpful to primary forest product industries (e.g., sawmills) who prefer high-quality pine sawtimber and are considering offering a price premium for higher-quality pine sawtimber. Findings can be useful for those interested in managing forests for multiple benefits (e.g., timber production, wildlife hunting leases, carbon credits, and other ecosystem service incentives), as managing stands on longer rotations can provide the dual opportunities of receiving price premiums for higher-quality sawtimber while simultaneously generating revenue from nontimber benefits, which may help justify delaying the final harvest. Our findings can also help make policymakers and forest managers more aware of the minimum price premiums required to offset the revenue loss accrued by delaying the final harvest.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 411
Author(s):  
Brice B. Hanberry

Land use and fire exclusion have influenced ecosystems worldwide, resulting in alternative ecosystem states. Here, I provide two examples from the southeastern United States of fire-dependent open pine and pine-oak forest loss and examine dynamics of the replacement forests, given continued long-term declines in foundation longleaf (Pinus palustris) and shortleaf (Pinus echinata) pines and recent increases in commercial loblolly (Pinus taeda) and slash (Pinus elliottii var. elliottii) pines. Shortleaf pine-oak forest historically may have been dominant on about 32 to 38 million ha, a provisional estimate based on historical composition of 75% of all trees, and has decreased to about 2.5 million ha currently; shortleaf pine now is 3% of all trees in the northern province. Longleaf pine forest decreased from about 30 million ha, totaling 75% of all trees, to 1.3 million ha and 3% of all trees in contemporary forests of the southern province. The initial transition from open pine ecosystems to closed forests, primarily comprised of broadleaf species, was countered by conversion to loblolly and slash pine plantations. Loblolly pine now accounts for 37% of all trees. Loss of fire-dependent ecosystems and their foundation tree species affect associated biodiversity, or the species that succeed under fire disturbance.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 953
Author(s):  
Shaik M. Hossain ◽  
Don C. Bragg ◽  
Virginia L. McDaniel ◽  
Carolyn C. Pike ◽  
Barbara S. Crane ◽  
...  

Between the late 1970s and the early 1990s, the USDA Forest Service installed 155 shortleaf pine (Pinus echinata Mill.) progeny tests in national forests across the Southern Region of the United States. Using control-pollinated crosses from the Mount Ida Seed Orchard, 84 of these progeny tests were established in the Ouachita and Ozark-St. Francis National Forests in Arkansas and Oklahoma. Each of these 84 test locations had, on average, 33 full-sibling families representing three local geographic seed sources (East Ouachita, West Ouachita, and Ozark). Though largely abandoned years ago, the progeny tests that remain provided an opportunity to determine if significant genetic and genetic × environment variance exists for performance traits (d.b.h., tree height, and survival) decades after installation. In 2018 and 2019, we remeasured d.b.h. and height and determined survival in 15 fully stocked progeny tests. Family variances were significant (p < 0.01) for both d.b.h. and height but not for survival (p > 0.05). Seed sources differed significantly (p < 0.05) for d.b.h., with more pronounced latitudinal differences. Additionally, we determined that individual tree and full-sibling family mean heritabilities were moderate (0.15 and 0.72, respectively, for d.b.h and 0.09 and 0.41, for height), suggesting relatively high genetic to environmental variation and good potential for genetic improvement. We also found that shortleaf pine families were broadly adapted in this region since family-by-test variances were non-significant (p > 0.05).


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 935
Author(s):  
Mohammad Bataineh ◽  
Ethan Childs

The need for a comprehensive and mechanistic understanding of competition has never been more important as plants adapt to a changing environment and as forest management evolves to focus on maintaining and enhancing complexity. With the recent decline in shortleaf pine (Pinus echinata Mill.) land area, it is critical to determine the effects of competition on shortleaf pine and its performance against loblolly pine (Pinus taeda L.), the preferred planted replacement. We evaluate differences in shortleaf and loblolly pine 10 year mean basal area increment (BAI) and crown dimensions across a gradient of neighborhoods. Linear mixed-effects regression models were developed using BAI and several crown metrics as responses and crowding, competitor species abundance and identity, and initial size and species identity of focal tree as predictors. Crowding of focal trees negatively impacted BAI and crown size (p < 0.001, respectively). Although loblolly pine had three times higher BAI as compared to shortleaf pine within similar neighborhoods, BAI was variable, and the crowding effect did not differ between shortleaf and loblolly pine (p ranged from 0.51–0.99). Competitive impacts on focal trees did not differ by competitor identity (p ranged from 0.07–0.70). Distance-independent competition indices better explained the variation in BAI and horizontal crown metrics, while distance-dependent size ratios were more effective at evaluating vertical crown metrics. These findings highlight shortleaf pine competitive potential in mature, natural-origin stands and provide support for the restoration of pine–hardwood and hardwood–pine stratified mixtures as well as management of shortleaf pine at long rotations.


2021 ◽  
Vol 491 ◽  
pp. 119125
Author(s):  
Arjun Adhikari ◽  
Ronald E. Masters ◽  
Henry Adams ◽  
Kumar P. Mainali ◽  
Chris B. Zou ◽  
...  

2021 ◽  
Author(s):  
Kevin M Robertson ◽  
Sharon M Hermann ◽  
Eric L Staller

Abstract Frequently burned old field shortleaf pine (Pinus echinata)–loblolly pine (Pinus taeda) woodlands in the southeastern US provide important wildlife habitat and multiple ecosystem services. Because these communities differ in composition of dominant plant species and have different land use legacies than native pine savannas, the ability to prevent encroachment by off-site broadleaf woody tree species using fire alone is in question. We use a long-term fire experiment to demonstrate that old field pine communities have been prevented from transitioning to hardwood forests for over 50 years through judicious application of prescribed fire applied at 1–2 year intervals, whereas communities with three-year fire intervals show signs of transitioning to hardwood forest. We emphasize tailoring fire regimes to particular contexts of land use history to achieve the most historic and sustainable ecosystem structure and function possible for conservation of native flora and fauna. Study Implications: Demonstrating the ability to maintain natural forest structure of old field loblolly pine–shortleaf pine communities in the southeastern US using frequent prescribed fire has implications for the future sustainability of hundreds of thousands of hectares of such land used to provide critical habitat for many species of imperiled and culturally valued wildlife. It also provides insight into restoration of longleaf pine communities on postagricultural land as promoted by multiple highly funded government initiatives. Frequently burned pine savannas and woodlands are resilient to wildfire and sustain natural hydrological cycles, both important for mitigating the effects of global climate change.


2021 ◽  
Author(s):  
J Davis Goode ◽  
Justin L Hart ◽  
Daniel C Dey ◽  
Scott J Torreano ◽  
Stacy L Clark

Abstract The spatial structure of forest ecosystems is dominated by the horizontal and vertical distribution of trees and their attributes across space. Canopy disturbance is a primary regulator of forest spatial structure. Although the importance of tree spatial pattern is widely acknowledged as it affects important ecosystem processes such as regeneration and recruitment into the overstory, quantitative reference spatial conditions to inform silvicultural systems are lacking. This is especially true for mixedwood forests, defined as those that contain hardwoods and softwoods in the canopy. We used data from a preexisting network of plots in a complex-stage mixedwood stand to investigate the influence of canopy disturbance on stand and neighborhood-scale spatial patterns. We reconstructed canopy disturbance history and linked detected stand-wide and gap-scale disturbance events to establishment and spatial patterns of shortleaf pine. The majority of shortleaf pine establishment coincided with stand-wide or gap-scale disturbance. Shortleaf pine was clustered at the stand scale but was randomly distributed at the neighborhood scale (i.e. five tree clusters), which was a legacy of the historical disturbance regime. These results may be used to improve natural disturbance-based silvicultural systems to restore and maintain mixedwood forests for enhanced resilience and provisioning of ecosystem goods and services. Study Implications: Shortleaf pine was clustered into compositionally distinct patches within the oak-pine stand. Based on our findings, we recommend managers of stands with patchy species composition consider silvicultural systems that focus on patches. This approach acknowledges the effects of intrastand spatial variability of biophysical conditions and interactions with stochastically occurring canopy disturbances on regeneration and recruitment. Patch clearcuts with reserves could be implemented with the openings correspondent to microsites that favor regeneration of shortleaf pine. Similar potential approaches could be seedtree, irregular shelterwood, and other regeneration methods suited to stand conditions and the silvics of the species of interest.


2021 ◽  
Author(s):  
W Henry McNab

Abstract Oak-pine (Quercus L. - Pinus L.) forest communities on low ridges in the southern Appalachian Mountains are losing diversity as mature pitch (P. rigida Mill.) and shortleaf (P. echinata Mill.) pines die and do not regenerate under a hardwood canopy. Restoration of biodiversity by planting pine seedlings is well known, but little is known regarding whether the configuration of planted seedlings affects growth and subsequent size (diameter at breast height, dbh) as trees age. The purpose of this study was to test the hypothesis that pines growing in groups of two or more trees respond with increased growth (expressed by dbh) to intraspecific competition with other pines compared to single trees subjected only to interspecific competition with surrounding hardwoods. For 13-year-old pitch and shortleaf pines, trees were larger in dbh when occurring in groups than trees occurring singly. Regression indicated that intraspecific competition accounted for 16% of the dbh variation of pitch pine and 29% for shortleaf pine. This study originated from chance observations in a small study of pine restoration. If a designed study confirms these results, resource managers could restore biodiversity with reduced site disturbance and establishment costs by planting pine seedlings in small groups rather than rows.


Sign in / Sign up

Export Citation Format

Share Document