Allometric crown relations in three northern Idaho conifer species

1999 ◽  
Vol 29 (5) ◽  
pp. 521-535 ◽  
Author(s):  
Robert A Monserud ◽  
John D Marshall

Allometric equations predicting individual branch and total crown leaf area, leaf mass, and branch wood mass were developed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca), ponderosa pine (Pinus ponderosa Dougl. ex Laws.), and western white pine (Pinus monticola Dougl. ex D. Don) on the Priest River Experimental Forest in northern Idaho. Whole crowns were weighed fresh in the field by crown quarter. Two antithetic random branches were sampled from each crown quarter, weighed fresh in the field, and returned to the laboratory for detailed analysis. Nonlinear weighted regression with the general allometric equation was used to estimate all parameters. For the branches, branch diameter and length, foliated length, and position in the crown explain 82-97% of the variation. Specific leaf area (leaf area/mass) differs significantly among species and increases with distance from the tree top. For whole trees, sapwood area at breast height, crown ratio and length, and crown competition factor (CCF) explain 94-99% of the variation. The assumption of linearity and constant ratio between leaf area and sapwood area held rather generally. Differences between two alternative estimators (branch summation vs. crown weighing) of total crown biomass and leaf area were not statistically significant. For stands, stand totals were estimated from the whole-tree equations and stand-inventory data. Generally, these stand estimates were intermediate between coastal forests west of the Cascades and drier forests in the rain shadow of the Rocky Mountain crest.


2003 ◽  
Vol 33 (1) ◽  
pp. 164-170 ◽  
Author(s):  
John D Marshall ◽  
Robert A Monserud

Specific leaf area (SLA), the ratio of projected leaf area to leaf dry mass, is a critical parameter in many forest process models. SLA describes the efficiency with which the leaf captures light relative to the biomass invested in the leaf. It increases from top to bottom of a canopy, but it is unclear why. We sampled stands with low and elevated canopies (young and old stands) to determine whether SLA is related to water potential, as inferred from branch height and length, or shade, as inferred from branch position relative to the rest of the canopy, or both. We studied western white pine (Pinus monticola Dougl. ex D. Don), ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.), and interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) in northern Idaho. SLA decreased with branch height (P < 0.0001) at rates that varied among species (P < 0.0001). Branch length had no influence on SLA (P = 0.85). We detected no differences with canopy elevation (P = 0.90), but the slopes of lines relating SLA to branch height may have differed between the canopy elevation classes (P = 0.039). The results are consistent with predictions based on the hypothesis that SLA decreases as the gravitational component of water potential falls. The lack of a strong shading effect simplifies the estimation of canopy SLA for process models, requiring only species and branch heights.



2007 ◽  
Vol 37 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
Kelsey Sherich ◽  
Amy Pocewicz ◽  
Penelope Morgan

Trees respond to edge-to-interior microclimate differences in fragmented forests. To better understand tree physiological responses to fragmentation, we measured ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws) and Douglas-fir ( Pseudotsuga menziesii (Mirbel) Franco) leaf area, crown ratios, sapwood area, basal area (BA) growth rates, and BA growth efficiency at 23 long-established (>50 year) forest edges in northern Idaho. Trees located at forest edges had more leaf area, deeper crowns, higher BA growth rates, and more sapwood area at breast height than interior trees. Ponderosa pine had significantly higher BA growth efficiency at forest edges than interiors, but Douglas-fir BA growth efficiency did not differ, which may relate to differences in photosynthetic capacity and drought and shade tolerance. Edge orientation affected BA growth efficiency, with higher values at northeast-facing edges for both species. Edge effects were significant even after accounting for variation in stand density, which did not differ between the forest edge and interior. Although edge trees had significantly greater canopy depth on their edge-facing than forest-facing side, sapwood area was evenly distributed. We found no evidence that growing conditions at the forest edge were currently subjecting trees to stress, but higher leaf area and deeper crowns could result in lower tolerance to future drought conditions.



2006 ◽  
Vol 21 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Karl Froese ◽  
Han-Sup Han

Abstract We collected residual stand-damage data from a mixed conifer stand in northern Idaho that had been commercially thinned with a cut-to-length harvesting system. The stand composition after harvesting was 76% grand fir (Abies grandis); 14% Douglas-fir (Pseudotsuga menziesii var. glauca); 5% western redcedar (Thuja plicata); and 5% lodgepole pine (Pinus contorta), western white pine (Pinus monticola), and ponderosa pine (Pinus ponderosa). For all crop trees, damage to the bole, roots, and crown was assessed using systematic sampling with a random start and fixed area plots. Wounding occurred on 37.4% of the remaining trees, but the severity of wounding varied significantly by species (P < 0.05). Eighty-four percent of wounding for all species combined was considered as small size (<194 cm2). The greatest average amount of damage to a bole occurred along the first 2 m up from the ground (67.2%) and also within 4 m of the forwarder centerline (67.7%). Gouges were present on 41% of all scars. Tree location to forwarder trail appears to have a significant effect on the number and height of scars on a tree (P < 0.05). We estimated that throughout a 20-year period, volume losses for grand fir because of decay would be 2.57% compared to 1.31% in an undamaged stand of similar composition. West. J. Appl. For. 21(3): 142–148.



2004 ◽  
Vol 34 (11) ◽  
pp. 2217-2229 ◽  
Author(s):  
Douglas B Mainwaring ◽  
Douglas A Maguire

Basal area and height growth were analyzed for individual trees in uneven-aged ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex. Loud.) stands in central Oregon. Basal area growth was modeled as a function of other stand and tree variables to address three general objectives: (1) to compare the predictive ability of distance-dependent versus distance-independent stand density variables; (2) to determine the degree to which small trees negatively affect the growth of overstory trees; and (3) to test for differences in growth efficiency between species and between indices of spatial occupancy used to define efficiency (area potentially available, crown projection area, and a surrogate for total tree leaf area). Distance-dependent variables were found to improve growth predictions when added to models with only distance-independent variables, and small trees were found to have a quantifiably negative effect on the growth of larger trees. While volume growth efficiency declined with increasing levels of spatial occupancy for lodgepole pine, ponderosa pine volume growth efficiency was greatest at the highest levels of crown base sapwood area and crown projection area. The behavior in ponderosa pine resulted from the previously recognized correlation between tree height and total leaf area or crown size. The final statistical models distinguished between the positive effect of relative height and the negative effect of increasing tree size.



1989 ◽  
Vol 4 (1) ◽  
pp. 15-17 ◽  
Author(s):  
David L. Wenny ◽  
Richard L. Woollen

Abstract Douglas-fir (Pseudotsuga menziesii var. glauca) ponderosa pine (Pinus ponderosa var. ponderosa), and western white pine (Pinus monticola) where chemically root pruned with cupric carbonate (CuCO3) during greenhouse production. The interior walls of Styroblock 4A® and Ray Leach® pine cell containers (each 66 cm³) were coated with latex paint containing CuCO3 at concentrations of 0, 30, 100, or 300 g/l. Seedlings were potted after one growing season, initiating a standard root growth potential test (Duryea 1984). The number and length of new roots more than 1 cm in length were measured. Seedling root systems increased in total root number and length, especially in the upper segments of the root plug, as a result of chemical root pruning. Seedling height and caliper were unaffected by the cupric carbonate treatments during the production phase, and a latex paint carrier did not decrease seedling growth. West. J. Appl. For. 4(1):15-17, January 1989.



2003 ◽  
Vol 33 (9) ◽  
pp. 1719-1726 ◽  
Author(s):  
C W Woodall ◽  
C E Fiedler ◽  
K S Milner

Intertree competition indices and effects were examined in 14 uneven-aged ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) stands in eastern Montana. Location, height, diameter at breast height (DBH), basal area increment, crown ratio, and sapwood area were determined for each tree (DBH >3.8 cm) on one stem-mapped plot (0.2-0.4 ha) in each sample stand. Based on tree locations, various competition indices were derived for each sample tree and correlated with its growth efficiency by diameter class. In addition, trends in individual tree attributes by diameter class and level of surrounding competition were determined. For trees with a DBH <10 cm, growth efficiency was most strongly correlated with the sum of surrounding tree heights within 10.6 m. The index most highly correlated for larger trees was the sum of surrounding basal area within 6.1 m. Regardless of tree size, individual tree growth efficiency, basal area increment, and crown ratio all decreased under increasing levels of competition, with the effect more pronounced in smaller trees. These results suggest that individual trees in uneven-aged stands experience competition from differing sources at varying scales based on their size, with response to competition diminishing as tree size increases.



2015 ◽  
Vol 45 (11) ◽  
pp. 1462-1473 ◽  
Author(s):  
Peter M. Brown ◽  
Michael A. Battaglia ◽  
Paula J. Fornwalt ◽  
Benjamin Gannon ◽  
Laurie S. Huckaby ◽  
...  

Management of many dry conifer forests in western North America is focused on promoting resilience to future wildfires, climate change, and land use impacts through restoration of historical patterns of forest structure and disturbance processes. Historical structural data provide models for past resilient conditions that inform the design of silvicultural treatments and help to assess the success of treatments at achieving desired conditions. We used dendrochronological data to reconstruct nonspatial and spatial forest structure at 1860 in fourteen 0.5 ha plots in lower elevation (∼1900–2100 m) ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) forests across two study areas in northern Colorado. Fires recorded by trees in two or more plots from 1667 to 1859 occurred, on average, every 8–15 years depending on scale of analysis. The last fire recorded in two or more plots occurred in 1859. Reconstructed 1860 stand structures were very diverse, with tree densities ranging from 0 to 320 trees·ha−1, basal areas ranging from 0.0 to 17.1 m2·ha−1, and quadratic mean diameters ranging from 0.0 to 57.5 cm. All trees in 1860 were ponderosa pine. Trees were significantly aggregated in 62% of plots in which spatial patterns could be estimated, with 10% to 90% of trees mainly occurring in groups of two to eight (maximum, 26). Current stands based on living trees with a diameter at breast height of ≥4 cm are more dense (range, 175–1010 trees·ha−1) with generally increased basal areas (4.4 to 23.1 m2·ha−1) and smaller trees (quadratic mean diameters ranging from 15.7 to 28.2 cm) and contain greater proportions of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and Rocky Mountain juniper (Juniperus scopulorum Sarg.). This is the first study to provide detailed quantitative metrics to guide restoration prescription development, implementation, and evaluation in these and similar ponderosa pine forests in northern Colorado.



1995 ◽  
Vol 25 (9) ◽  
pp. 1553-1557 ◽  
Author(s):  
Kevin L. O'Hara ◽  
Narayanan I. Valappil

Ponderosa pine (Pinusponderosa Dougl. ex Laws.) frequently grows in pure, multi-aged stands throughout its range. Sapwood–leaf area prediction equations were developed for multi-aged, multi-strata ponderosa pine stands in western Montana and central Oregon. No significant differences were found between equations for trees from lower or upper strata, or between equations for all trees and equations for upper or lower strata trees in either study location. These results indicate overstory ponderosa pine trees do not require significantly greater sapwood conducting tissue per unit of leaf area than understory trees. Single variable models using only sapwood area at breast height are recommended.



2001 ◽  
Vol 31 (12) ◽  
pp. 2173-2182 ◽  
Author(s):  
Linda M Nagel ◽  
Kevin L O'Hara

The effects of vertical arrangement of foliage in even-aged and multiaged stand structures of ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) on overall stand growth, light interception, and physiological leaf properties were tested on five plot pairs in western Montana. The primary structural difference between stand structures involves greater canopy depth and stratification of foliage in the multiaged stands. Both area- and mass-based maximum photosynthetic rates (Aarea and Amass) were relatively constant with canopy depth in both stand structures. Area- and mass-based leaf nitrogen (Narea and Nmass) decreased with increasing canopy depth in the even-aged stand structures but not in the multiaged. Specific leaf area (SLA) tended to increase with increasing canopy depth, although this relationship was only significant in the multiaged stand structures. The typical linear relationship observed for many species between photosynthetic rate and leaf nitrogen was not present in either stand structure; however, Narea was highly correlated to SLA in both even-aged and multiaged stand structures (R2 = 0.66 and R2 = 0.52, respectively). There were no differences in the light extinction coefficient (k), basal area growth or efficiency, or stand-level leaf area index between even-aged and multiaged plot pairs. Relative constancy in leaf physiology combined with similarities in site occupancy and growth rates help explain how different stand structures of ponderosa pine maintain similar rates of woody biomass productivity.



2012 ◽  
Vol 42 (12) ◽  
pp. 2022-2036 ◽  
Author(s):  
Ryan S. Davis ◽  
Sharon Hood ◽  
Barbara J. Bentz

Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine mortality and resin flow and bark beetle colonization and reproduction following a prescribed fire in Idaho and a wildfire in Montana. The level of fire-caused tree injury differed between the two sites, and the level of tree injury most susceptible to bark beetle attack and colonization also differed. Strip-attacked trees alive 3 years post-fire had lower levels of bole and crown injury than trees mass attacked and killed by bark beetles, suggesting that fire-injured trees were less well defended. Brood production of western pine beetle ( Dendroctonus brevicomis LeConte) did not differ between fire-injured and uninjured trees, although mountain pine beetle ( Dendroctonus ponderosae Hopkins) brood production was low in both tree types, potentially due to competition with faster developing bark beetle species that also colonized trees. Despite a large number of live trees remaining at both sites, bark beetle response to fire-injured trees pulsed and receded within 2 years post-fire, potentially due to a limited number of trees that could be easily colonized.



Sign in / Sign up

Export Citation Format

Share Document