Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine - Douglas-fir forests in western Montana

2000 ◽  
Vol 30 (2) ◽  
pp. 274-282 ◽  
Author(s):  
J A Newland ◽  
T H DeLuca

Nitrogen fixing plants have been reported to play an important role in replacing N lost from soil in fire dominated ecosystems. Exclusion of fire from ponderosa pine (Pinus ponderosa Dougl. ex Laws.) - Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests of western Montana has lead to widespread changes in forest structure, composition, and function including a potential reduction in the occurrence of N-fixing plant species. We investigated the effect of fire exclusion and reintroduction of fire on the frequency, occurrence, and function of native N-fixing plant species at 11 paired burned and unburned sites in western Montana. These pairs had been either undisturbed since the early 1900s or had been repeatedly opened by logging and (or) fire over the last 80-100 years. Although the percent cover of N-fixing plants was low at all sites, the cover and frequency of N-fixing plants were significantly greater in sites exposed to fire than in the unburned sites and greater in repeatedly opened sites than in undisturbed sites. In contrast, levels of available N were significantly lower in burned sites compared with unburned sites and in repeatedly opened sites. Nitrogen-fixing plants may have played an important role in maintaining productivity in frequently burned ponderosa pine forests but now appear to be suppressed in fire-excluded forests.

2008 ◽  
Vol 17 (1) ◽  
pp. 84 ◽  
Author(s):  
Jennifer Pierce ◽  
Grant Meyer

Alluvial fan deposits are widespread and preserve millennial-length records of fire. We used these records to examine changes in fire regimes over the last 2000 years in Yellowstone National Park mixed-conifer forests and drier central Idaho ponderosa pine forests. In Idaho, frequent, small, fire-related erosional events occurred within the Little Ice Age (~1450–1800 AD), when greater effective moisture probably promoted grass growth and low-severity fires. This regime is consistent with tree-ring records showing generally wetter conditions and frequent fires before European settlement. At higher elevations in Yellowstone, cool conditions limited overall fire activity. Conversely, both Idaho and Yellowstone experienced a peak in fire-related debris flows between ~950 and 1150 AD. During this generally warmer time, severe multidecadal droughts were interspersed with unusually wet intervals that probably increased forest densities, producing stand-replacing fires. Thus, severe fires are clearly within the natural range of variability in Idaho ponderosa pine forests over longer timescales. Historical records indicate that large burn areas in Idaho correspond with drought intervals within the past 100 years and that burn area has increased markedly since ~1985. Recent stand-replacing fires in ponderosa pine forests are likely related to both changes in management and increasing temperatures and drought severity during the 20th century.


2003 ◽  
Vol 18 (3) ◽  
pp. 149-154 ◽  
Author(s):  
Chad E. Keyser ◽  
Kelsey S. Milner

Abstract This study examined long-term diameter and height response of ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta var. latifolia) to a one-time application of herbicide during seedling establishment in western Montana. Two herbicide trials initiated in 1981 and 1983 by Champion International Corporation were resurrected during the summer of 1997. Analysis of variance (ANOVA) F-tests along with Duncan's Multiple Range tests (DMR) were performed on mean tree dbh, tree height, and competing vegetation percent cover estimates. In addition, a graphical analysis of mean annual height growth over time was performed. Significant increases (alpha = 0.05) in ponderosa pine dbh (25 to 44%) and height (11 to 28%) were found after 16 yr of growth on Velpar L. (hexazinone) treated plots, while lodgepole pine had significant increases in dbh (70 to 118%) and height (41 to 82%) after 15 yr of growth on Velpar L. treated plots. Graphical analyses indicated a positive height growth effect for a period of 11 to 13 yr following treatment for ponderosa pine; however, total height gains had decreased in recent years. Positive increases in height growth for lodgepole pine were continuing after 15 yr of growth. These results indicate that a one-time application of herbicide applied during seedling establishment will promote faster tree growth in western Montana. We also note that proper density management will be necessary early in the life of the stand to maintain height gains. West. J. Appl. For. 18(3):149–154.


2008 ◽  
Vol 17 (1) ◽  
pp. 50 ◽  
Author(s):  
Rosemary L. Sherriff ◽  
Thomas T. Veblen

Understanding the interactions of climate variability and wildfire has been a primary objective of recent fire history research. The present study examines the influence of El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on fire occurrence using fire-scar evidence from 58 sites from the lower ecotone to the upper elevational limits of ponderosa pine (Pinus ponderosa) in northern Colorado. An important finding is that at low v. high elevations within the montane zone, climatic patterns conducive to years of widespread fire are different. Differences in fire–climate relationships are manifested primarily in antecedent year climate. Below ~2100 m, fires are dependent on antecedent moister conditions that favour fine fuel accumulation 2 years before dry fire years. In the upper montane zone, fires are dependent primarily on drought rather than an increase in fine fuels. Throughout the montane zone, fire is strongly linked to variations in moisture availability that in turn is linked to climate influences of ENSO, PDO and AMO. Fire occurrence is greater than expected during the phases of each index associated with drought. Regionally widespread fire years are associated with specific phase combinations of ENSO, PDO and AMO. In particular, the combination of La Niña, negative PDO and positive AMO is highly conducive to widespread fire.


2012 ◽  
Vol 42 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Emily K. Heyerdahl ◽  
Ken Lertzman ◽  
Carmen M. Wong

Historical fire severity is poorly characterized for dry forests in the interior west of North America. We inferred a multicentury history of fire severity from tree rings in Douglas-fir ( Pseudotsuga menziesii var. glauca (Beissn.) Franco) – ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) forests in the southern interior of British Columbia, Canada. In 2 ha plots distributed systematically over 1105 ha, we determined the dates of fire scars, indicators of low-severity fire, from 125 trees and inferred dates of even-aged cohorts, potential indicators of high-severity fire, from establishment dates of 1270 trees. Most (76%) of the 41 plots contained fire-scarred trees with a mean plot-composite fire scar interval of 21 years (1700–1900). Most (76%) also contained one or two cohorts. At the plot scale, we inferred that the fire regime at most plots was of mixed severity through time (66%) and at the remaining plots of low (20%), high (10%), or unknown (4%) severity through time. We suggest that across our study area, the fire regime was mixed severity over the past several centuries, with low-severity fires most common and often extensive but small, high-severity disturbances also occasionally occurred. Our results present strong evidence for the importance of mixed-severity fire regimes in which low-severity fires dominate in interior Douglas-fir – ponderosa pine forests in western Canada.


Sign in / Sign up

Export Citation Format

Share Document