THE BIOLOGICAL CONTROL OF GLYCOGEN METABOLISM IN AGROBACTERIUM TUMEFACIENS

1963 ◽  
Vol 41 (1) ◽  
pp. 561-571 ◽  
Author(s):  
N. B. Madsen

The hypothesis has been advanced that the inhibition of phosphorylase by uridine diphosphate glucose (UDPG), together with the fact that the latter compound is the substrate for glycogen synthetase, is the basis of a mechanism for the biological control of glycogen metabolism in Agrobacterium tumefaciens. Experiments were designed to test this hypothesis on the assumption that such a control mechanism would manifest itself by the concentrations of UDPG and glycogen bearing some relationship to each other during various stages of growth and nutrition. Glycogen levels in the cells increased markedly during the lag phase of growth, decreased during the exponential growth phase, and increased again as growth ceased due to the depletion of nitrogen from the medium (nitrogen starvation). The UDPG concentration paralleled these changes, and a high positive correlation between the concentrations of UDPG and glycogen was demonstrated. The addition of ammonium chloride to nitrogen-starved cells caused a prompt resumption of growth, a sharp decrease in the UDPG concentration, and a somewhat smaller decrease in glycogen concentration. Cells placed in buffered salt solution and aerated had a low concentration of UDPG and exhibited a steady decline of the glycogen reserves. Although factors other than those considered here may also be of importance in the control of glycogen metabolism in this organism, the data in general support the hypothesis advanced above.

1963 ◽  
Vol 41 (3) ◽  
pp. 561-571 ◽  
Author(s):  
N. B. Madsen

The hypothesis has been advanced that the inhibition of phosphorylase by uridine diphosphate glucose (UDPG), together with the fact that the latter compound is the substrate for glycogen synthetase, is the basis of a mechanism for the biological control of glycogen metabolism in Agrobacterium tumefaciens. Experiments were designed to test this hypothesis on the assumption that such a control mechanism would manifest itself by the concentrations of UDPG and glycogen bearing some relationship to each other during various stages of growth and nutrition. Glycogen levels in the cells increased markedly during the lag phase of growth, decreased during the exponential growth phase, and increased again as growth ceased due to the depletion of nitrogen from the medium (nitrogen starvation). The UDPG concentration paralleled these changes, and a high positive correlation between the concentrations of UDPG and glycogen was demonstrated. The addition of ammonium chloride to nitrogen-starved cells caused a prompt resumption of growth, a sharp decrease in the UDPG concentration, and a somewhat smaller decrease in glycogen concentration. Cells placed in buffered salt solution and aerated had a low concentration of UDPG and exhibited a steady decline of the glycogen reserves. Although factors other than those considered here may also be of importance in the control of glycogen metabolism in this organism, the data in general support the hypothesis advanced above.


1978 ◽  
Vol 173 (2) ◽  
pp. 701-704 ◽  
Author(s):  
J S Franzen ◽  
P Marchetti ◽  
R Ishman ◽  
J Ashcom

6,6-Dithiodinicotinate shows half-of-the-sites reactivity towards the six catalytic-site thiol groups of bovine liver UDP-glucose dehydrogenase. The reagent introduces three intrasubunit disulphide linkages between catalytic-site thiol groups and non-catalytic-site thiol groups and abrogates 60% of the catalytic activity of the hexameric enzyme; excess 2-mercaptoethanol rapidly restores full catalytic activity. These results show the half-of-the-sites behaviour of the enzyme with the reagent and the presence of a non-catalytic-site thiol group capable of forming a disulphide linkage with a catalytic-site thiol group on the same subunit without irreversible denaturation.


1967 ◽  
Vol 105 (2) ◽  
pp. 515-519 ◽  
Author(s):  
V. N. Nigam

Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.


1972 ◽  
Vol 129 (3) ◽  
pp. 619-633 ◽  
Author(s):  
J. Fevery ◽  
P. Leroy ◽  
K. P. M. Heirwegh

1. Digitonin-treated and untreated homogenates, cell extracts and washed microsomal preparations from liver of Wistar R rats are capable of transferring sugar from UDP-glucose or UDP-xylose to bilirubin. No formation of bilirubin glycosides occurred with UDP-galactose or d-glucose, d-xylose or d-glucuronic acid as the sources of sugar. 2. Procedures to assay digitonin-activated and unactivated bilirubin UDP-glucosyltransferase and bilirubin UDP-xylosyltransferase were developed. 3. In digitonin-activated microsomal preparations the transferring enzymes had the following properties. Both enzyme activities were increased 2.5-fold by pretreatment with digitonin. They were optimum at pH6.6–7.2. Michaelis–Menten kinetics were followed with respect to UDP-glucose. In contrast, double-reciprocal plots of enzyme activity against the concentration of UDP-xylose showed two intersecting straight-line sections corresponding to concentration ranges where either bilirubin monoxyloside was formed (at low UDP-xylose concentrations) or where mixtures of both the mono- and di-xyloside were synthesized (at high UDP-xylose concentrations). Both enzyme activities were stimulated by Mg2+; Ca2+ was slightly less, and Mn2+ slightly more, stimulatory than Mg2+. Of the activities found in standard assay systems containing Mg2+, 58–78% (substrate UDP-glucose) and 0–38% (substrate UDP-xylose) were independent of added bivalent metal ion. Double-reciprocal plots of the Mg2+-dependent activities against the concentration of added Mg2+ were linear. 4. In comparative experiments the relative activities of liver homogenates obtained with UDP-glucuronic acid, UDP-glucose and UDP-xylose were 1:1.5:2.7 for untreated preparations and 1:0.29:0.44 after activation with digitonin. 5. Bilirubin UDP-glucuronyltransferase was protected against denaturation by human serum albumin, whereas bilirubin UDP-xylosyltransferase was not. 6. Digitonin-treated and untreated liver homogenates from Gunn rats were inactive in transferring sugar to bilirubin from UDP-glucuronic acid (in agreement with the work of others), UDP-glucose or UDP-xylose.


2008 ◽  
Vol 1 (3) ◽  
pp. 333-340 ◽  
Author(s):  
H. Abbas ◽  
R. Zablotowicz ◽  
H. Bruns

To successfully exploit biological control it is desirable to understand how the introduced agent colonises the host and interferes with establishment of the pest. This study assessed field colonisation of maize by Aspergillus flavus strains as biological control agents to reduce aflatoxin contamination. Maize (corn, Zea mays L.) ears were inoculated with A. flavus using a pin-bar technique in 2004 and 2005. Non-aflatoxigenic strains K49 (NRRL 30797) & CT3 (NRRL 30798) and toxigenic F3W4 (NRRL 30798) were compared against a carrier control (0.2% aqueous Tween 20). Ten ears were sampled over 12 to 20 days, visually assessed, and curves fit to a three compartment Gompertz equation or other best appropriate regressions. Aflatoxin was determined by HPLC and cyclopiazonic acid (CPA) by LC/MS. The Gompertz model describes growth parameters, e.g. growth constant, lag phase and maximum colonisation characterised patterns of maize colonisation for most inoculated treatments. Aflatoxin accumulation in maize inoculated with F3W4 was about 35,000 ng/g in 2004 and 2005, with kinetics of aflatoxin accumulation in 2005 well described by the Gompertz equation. Less than 200 ng/g was observed in maize inoculated with strains CT3 & K49 and accumulation was described by a linear or logistic model. Maize inoculated with strains CT3 and F3W4 accumulated a maximum of 220 and 169 µg/kg CPA, respectively, compared to 22 and 0.2 µg/kg in the control and K49 inoculated, respectively. This technique can be used to elucidate colonisation potential of non-toxigenic A. flavus in maize in relation to biological control of aflatoxin. The greatest reduction of aflatoxin and CPA in maize inoculated with strain K49 and Gompertz parameters on colonisation indicates its superiority to CT3 as a biological control agent. The dynamics of maize colonisation by A. flavus strains and subsequent mycotoxin accumulation generated by using the pin-bar technique has implications for characterising the competence of biocontrol strains for reducing aflatoxin contamination.


Sign in / Sign up

Export Citation Format

Share Document