The neurotoxic actions of quinolinic acid in the central nervous system

1986 ◽  
Vol 64 (3) ◽  
pp. 369-375 ◽  
Author(s):  
S. R. El-Defrawy ◽  
R. J. Boegman ◽  
K. Jhamandas ◽  
R. J. Beninger

Excitotoxins such as kainic acid, ibotenic acid, and quinolinic acid are a group of molecules structurally related to glutamate or aspartate. They are capable of exciting neurons and producing axon sparing neuronal degeneration. Quinolinic acid (QUIN), an endogenous metabolite of the amino acid, tryptophan, has been detected in brain and its concentration increases with age. The content of QUIN in the brain and the activity of the enzymes involved in its synthesis and metabolism show a regional distribution. The neuroexcitatory action of QUIN is antagonized by magnesium (Mg2+) and the aminophosphonates, proposed N-methyl-D-aspartate (NMDA) receptor antagonists, suggesting that QUIN acts at the Mg2+-sensitive NMDA receptor. Like its excitatory effects, QUIN's neurotoxic actions in the striatum are antagonized by the aminophosphonates. This suggests that QUIN neurotoxicity involves the NMDA receptor and (or) another receptor sensitive to the aminophosphonates. The neuroexcitatory and neurotoxic effects of QUIN are antagonized by kynurenic acid (KYN), another metabolite of tryptophan. QUIN toxicity is dependent on excitatory amino acid afferents and shows a regional variation in the brain. Local injection of QUIN into the nucleus basalis magnocellularis (NBM) results in a dose-dependent reduction in cortical cholinergic markers including the evoked release of acetylcholine. A significant reduction in cortical cholinergic function is maintained over a 3-month period. Coinjection of an equimolar ratio of QUIN and KYN into the NBM results in complete protection against QUIN-induced neurodegeneration and decreases in cortical cholinergic markers. In contrast, focal injections of QUIN into the frontoparietal cortex do not alter cortical cholinergic function. Animals showing central cholinergic hypofunction induced by QUIN could serve as experimental models for testing pharmacological agents aimed at improving the function of damaged cholinergic neurons.

2006 ◽  
Vol 98 (4) ◽  
pp. 1007-1018 ◽  
Author(s):  
Andre Nieoullon ◽  
Benoit Canolle ◽  
Frederique Masmejean ◽  
Benjamin Guillet ◽  
Pascale Pisano ◽  
...  

2000 ◽  
Vol 93 (2) ◽  
pp. 489-496 ◽  
Author(s):  
Esther M. Pogatzki ◽  
Peter K. Zahn ◽  
Timothy J. Brennan

Background Drugs that block spinal excitatory amino acid receptor activation may prevent pain after surgery. The authors previously studied the effect of excitatory amino acid receptor antagonists after incision. In the present study, we examined the role of N-methyl-d-aspartate (NMDA), non-NMDA, and metabotropic glutamate receptors (mGluRs) on the development of pain behavior after plantar incision. Methods Rats with lumbar intrathecal catheters were anesthetized with halothane. Fifteen minutes before an incision was made, drug [40 nmol MK-801; 20 nmol NBQX; or 200 nmol (+)-MCPG] or vehicle was injected intrathecally followed by an infusion of the same drug for 75 min. Withdrawal thresholds to calibrated von Frey filaments applied adjacent to the wound and response frequencies to a blunt mechanical stimulus applied directly to the wound were measured before incision and 1, 2, 4, and 6 h after incision and then once daily for 6 days. Results Preincision treatments with antagonists against the NMDA (MK-801) and group I and II metabotropic receptors [(+)-MCPG] did not inhibit the development of mechanical hyperalgesia caused by incision. Preincision treatment with the non-NMDA receptor antagonist NBQX increased withdrawal thresholds at 1 and 2 h and on postoperative day 1 compared with the vehicle group; response frequencies were reduced 1 and 2 h after incision and on postoperative day 2 (P < 0.05). In an additional group, postincision treatment with NBQX was similar to preincision treatment. Conclusion Spinal NMDA and mGluR antagonists may not be useful for preventing postsurgical pain. Spinal non-NMDA receptor antagonists reduced pain behaviors, but a preventive effect using preincision treatment was not apparent.


1991 ◽  
Vol 65 (4) ◽  
pp. 946-951 ◽  
Author(s):  
J. P. Wuarin ◽  
F. E. Dudek

1. The effects of specific excitatory amino acid (EAA) antagonists on evoked excitatory synaptic responses were studied in the hypothalamic paraventricular nucleus (PVN) of the guinea pig, by the use of the in vitro slice preparation. Intracellular recordings were obtained from paraventricular neurons, and excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were induced by perifornical electrical stimulation. To reduce the influence of a potential gamma-aminobutyric acidA (GABAA) inhibitory component on the synaptic responses, all experiments were performed in the presence of 50 microM picrotoxin. 2. Of 20 cells tested, 13 had electrophysiological characteristics similar to magnocellular neuropeptidergic cells (MNCs) and 7 displayed low-threshold Ca2+ spikes (LTSs). No difference was detected in the effect of the antagonists on the synaptic responses of cells with or without LTS potentials. 3. The broad-spectrum EAA antagonist kynurenic acid decreased the amplitude of the EPSPs and EPSCs in a dose-dependent manner: the mean decrease was 5% for 100 microM, 43% for 300 microM, and 70% for 1 mM. 4. The quisqualate/kainate-receptor-selective antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX) induced a dose-dependent decrease of the EPSPs and EPSCs: 1 microM had no detectable effect, 3 and 10 microM caused 30 and 70% decreases, respectively, and 30 microM blocked the response almost completely. This effect was not accompanied by a change in resting membrane potential or input resistance and was slowly reversible. 5. The N-methyl-D-aspartate (NMDA)-receptor-selective antagonist DL-2-amino-5-phosphonopentanoic acid (AP5), applied at 30 and 300 microM, reduced slightly the amplitude of the decay phase of the EPSP but did not significantly affect the peak amplitude. In some cells, the current-voltage relationship of the decay phase of the EPSC revealed a region of negative slope conductance between -70 and -40 mV. 6. These results suggest that 1) glutamate or a related EAA is responsible for the fast excitatory input to magnocellular and parvocellular neurons in the PVN and probably also for cells around PVN, 2) a quisqualate/kainate receptor type is responsible for the rising phase and peak amplitude of the synaptic current, and 3) an NMDA receptor contributes to the late part of the synaptic response.


1991 ◽  
Vol 65 (3) ◽  
pp. 454-467 ◽  
Author(s):  
J. Keifer ◽  
J. C. Houk

1. Bursts of discharge have been recorded in the red nucleus in several species and are thought to represent the expression of motor commands. A cerebellorubral circuit comprised of recurrent connections among the cerebellum, red nucleus, and reticular formation was postulated to function as a positive feedback loop that generates these motor commands and transmits them to the spinal cord via the rubrospinal pathway. We have used an in vitro preparation from the turtle that leaves the circuitry connecting the cerebellum, brain stem, and spinal cord intact to study the role of excitatory amino acid neurotransmitters and recurrent excitation in mediating the generation of burst discharges in the red nucleus. 2. Burst discharges were recorded extracellularly from single cells in the red nucleus in response to single pulse or brief train stimulation of the contralateral spinal cord or brief train stimuli applied to the ipsilateral cerebellar cortex. The firing characteristics and pharmacologic sensitivities of the bursts were independent of the type of stimulus used. The bursts had long durations ranging from 2 to 17 s and showed spike frequency adaptation. 3. Transection of the cerebellar peduncle, which eliminates inhibition impinging onto the cerebellorubral circuit, greatly enhanced the spontaneous activity and burst discharges recorded in the contralateral red nucleus. Furthermore, bath application of a solution containing elevated levels of calcium and magnesium blocked the expression of burst discharges even though synaptic activation of the neurons was not blocked. 4. The possibility that excitatory amino acid receptors mediate burst responses in the red nucleus was investigated in light of the antagonistic effects of elevated magnesium ions on bursting. Bath application of 100 microns DL-2-amino-5-phosphonovaleric acid (APV), a specific N-methyl-D-aspartate (NMDA) receptor antagonist; [10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)], a specific non-NMDA receptor antagonist; or 100 microM, DL-2-amino-4-phosphonobutyric acid (AP4), an agonist of a fourth class of excitatory amino acid receptor, blocked burst activity in the red nucleus. With a multibarreled pipette for simultaneous ejection of drug and recording, iontophoresis of APV or CNQX into the red nucleus blocked bursting whereas AP4 failed to show a significant effect. These data suggest that red nucleus neurons have both NMDA and non-NMDA receptors. The site of action of the AP4-sensitive receptor appears to be elsewhere in the cerebellorubral circuit. 5. Iontophoretic application of excitatory amino acid receptor agonists NMDA and quisqualate (Q) induced excitation of red nucleus neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 61 ◽  
pp. 304
Author(s):  
Keiji Maruyama ◽  
Naonori Inoue ◽  
Sachiko Tanaka ◽  
Kimiko Aoki ◽  
Takemi Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document