scholarly journals Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water

2012 ◽  
Vol 90 (5) ◽  
pp. 663-676 ◽  
Author(s):  
A.M. Pagano ◽  
G.M. Durner ◽  
S.C. Amstrup ◽  
K.S. Simac ◽  
G.S. York

Polar bears ( Ursus maritimus Phipps, 1774) depend on sea ice for catching marine mammal prey. Recent sea-ice declines have been linked to reductions in body condition, survival, and population size. Reduced foraging opportunity is hypothesized to be the primary cause of sea-ice-linked declines, but the costs of travel through a deteriorated sea-ice environment also may be a factor. We used movement data from 52 adult female polar bears wearing Global Positioning System (GPS) collars, including some with dependent young, to document long-distance swimming (>50 km) by polar bears in the southern Beaufort and Chukchi seas. During 6 years (2004–2009), we identified 50 long-distance swims by 20 bears. Swim duration and distance ranged from 0.7 to 9.7 days (mean = 3.4 days) and 53.7 to 687.1 km (mean = 154.2 km), respectively. Frequency of swimming appeared to increase over the course of the study. We show that adult female polar bears and their cubs are capable of swimming long distances during periods when extensive areas of open water are present. However, long-distance swimming appears to have higher energetic demands than moving over sea ice. Our observations suggest long-distance swimming is a behavioral response to declining summer sea-ice conditions.

ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 14 ◽  
Author(s):  
Ian Stirling ◽  
Evan Richardson ◽  
Gregory W. Thiemann ◽  
Andrew E. Derocher

In April and May 2003 through 2006, unusually rough and rafted sea ice extended for several tens of kilometres offshore in the southeastern Beaufort Sea from about Atkinson Point to the Alaska border. Hunting success of polar bears (Ursus maritimus) seeking seals was low despite extensive searching for prey. It is unknown whether seals were less abundant in comparison to other years or less accessible because they maintained breathing holes below rafted ice rather than snowdrifts, or whether some other factor was involved. However, we found 13 sites where polar bears had clawed holes through rafted ice in attempts to capture ringed seals (Phoca hispida) in 2005 through 2006 and another site during an additional research project in 2007. Ice thickness at the 12 sites that we measured averaged 41 cm. These observations, along with cannibalized and starved polar bears found on the sea ice in the same general area in the springs of 2004 through 2006, suggest that during those years, polar bears in the southern Beaufort Sea were nutritionally stressed. Searches made farther north during the same period and using the same methods produced no similar observations near Banks Island or in Amundsen Gulf. A possible underlying ecological explanation is a decadal-scale downturn in seal populations. But a more likely explanation is major changes in the sea-ice and marine environment resulting from record amounts and duration of open water in the Beaufort and Chukchi seas, possibly influenced by climate warming. Because the underlying causes of observed changes in polar bear body condition and foraging behaviour are unknown, further study is warranted.


ARCTIC ◽  
2019 ◽  
Vol 72 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Thomas G. Smith ◽  
Ian Stirling

Harp seals (Pagophilus groenlandicus) that breed in February and March in the White Sea migrate to open water around Svalbard and Franz Josef Land in the Barents Sea, feeding pelagically while following the receding ice edge northward to the edge of the polar pack. Although harp seals are present throughout the area during the summer, they are primarily pelagic and do not appear to be extensively preyed upon by polar bears (Ursus maritimus). However, occasionally, large numbers of harp seals may haul out and rest on the pack ice or feed in the water below the ice and surface to breathe between the floes. When approached by a polar bear while on the ice, harp seals do not exhibit the instant flight response characteristic of the polar bear’s primary prey species, ringed (Pusa hispida) and bearded seals (Erignathus barbatus). In this situation, polar bears may make multiple kills without either consuming their own prey or scavenging seals killed by other bears. This behavior appears not to frighten other nearby harp seals, whether hauled out on the ice or in the water below the floes. These unusual concentrations of harp seals hauled out on sea ice may be related to the distribution and abundance of fish or other epontic prey. Their lack of an escape response to predators on the surface of the sea ice is probably a result of briefly hauling out in large numbers in spring while whelping on the sea ice in areas where the consequences of potential polar bear predation are insignificant. The rare events of harp seal mortality from bears killing them on the surface of pack ice during the summer do not appear to have a significant impact at the population level of either species.


2020 ◽  
Vol 639 ◽  
pp. 1-19 ◽  
Author(s):  
MA Blanchet ◽  
J Aars ◽  
M Andersen ◽  
H Routti

Polar bears Ursus maritimus are currently facing rapid environmental changes with loss of sea ice and shifts in their prey distribution. Two distinct ecotypes exist in the Barents Sea, where sea ice is decreasing at the highest rate in the Arctic. Coastal bears remain within the Archipelago of Svalbard year-round, whereas offshore bears follow the marginal ice zone (MIZ). We explored these 2 ecotypes’ habitat use, activity and energy needs as well as seasonal variation within these parameters. During the period from 2011-2018, adult female polar bears were equipped with GPS collars and activity sensors (n = 84); 46 of these were equipped with conductivity switches to record aquatic behaviour. Offshore bears travelled longer distances at a higher speed on land and at sea away from land and had a higher activity rate compared to coastal bears. This translated into higher overall energy expenditure. Offshore bears also undertook more distant and energetically costly trips from land to the MIZ, swimming in open water. Both ecotypes showed similar seasonal patterns of activity and movement consistent with their life history linked to sea ice phenology. Despite higher energy expenditure, the offshore strategy seemed to be as profitable as the coastal one as females had marginally better spring body condition, likely due to their specialized high caloric diet of seals throughout the year. However, both ecotypes are currently experiencing habitat changes. Future studies should aim to predict how rapidly declining sea ice in the Barents Sea may challenge polar bears energetically during the coming decades.


2013 ◽  
Vol 19 (9) ◽  
pp. 2675-2687 ◽  
Author(s):  
Laura Castro de la Guardia ◽  
Andrew E. Derocher ◽  
Paul G. Myers ◽  
Arjen D. Terwisscha van Scheltinga ◽  
Nick J. Lunn

2020 ◽  
Author(s):  
John Shears ◽  
Julian Dowdeswell ◽  
Freddie Ligthelm ◽  
Paul Wachter

<p>The Weddell Sea Expedition 2019 (WSE) was conceived with dual aims: (i) to undertake a comprehensive international inter-disciplinary programme of science centred in the waters around Larsen C Ice Shelf, western Weddell Sea; and (ii) to search for, survey and image the wreck of Sir Ernest Shackleton’s Endurance, which sank in the Weddell Sea in 1915. </p><p>The 6-week long expedition, funded by the Flotilla Foundation, required the use of a substantial ice-strengthened vessel given the very difficult sea-ice conditions encountered in the Weddell Sea, and especially in its central and western parts. The South African ship SA Agulhas II was chartered for its Polar Class 5 icebreaking capability and design as a scientific research vessel. The expedition was equipped with state-of-the-art Autonomous Underwater Vehicles (AUVs) and a Remotely Operated Vehicle (ROV) which were capable of deployment to waters more than 3,000 m deep, thus making the Larsen C continental shelf and slope, and the Endurance wreck site, accessible. During the expedition, a suite of passive and active remote-sensing data, including TerraSAR-X radar images delivered in near real-time, was provided to the ice-pilot onboard the SA Agulhas II. These data were instrumental for safe vessel navigation in sea ice and the detection and tracking of icebergs and ice floes of scientific interest.</p><p>The scientific programme undertaken by the WSE was very successful and produced many new geological, geophysical, marine biological and oceanographic observations from a part of the Weddell Sea that has been little studied previously, particularly the area east of Larsen C Ice Shelf. The expedition also reached the sinking location of Shackleton’s Endurance, where the presence of open-water sea ice leads allowed the deployment of an AUV to the ocean floor to try and locate and survey the wreck. Unfortunately, SA Agulhas II later lost communication with the AUV, and deteriorating weather and sea ice conditions meant that the search had to be called off.</p>


Polar Record ◽  
2008 ◽  
Vol 44 (1) ◽  
pp. 51-76 ◽  
Author(s):  
Gita J. Laidler ◽  
Pootoogoo Elee

ABSTRACTSea ice has been, and continues to be, an integral component of life in the Inuit community of Cape Dorset, Nunavut. Located on an island of the same name off the southwestern coast of Baffin Island, the strong Hudson Strait currents prevent extensive ice formation around the community. Nevertheless, sea ice remains an important travel and hunting platform, enabling access to Baffin Island, hunting and fishing grounds, and nearby communities. With the combined importance, dynamism, and continuous use of this frozen ocean environment, local Inuit elders and hunters have developed a detailed and nuanced understanding of sea ice conditions, freeze/thaw processes, and the influences of winds and currents on ice conditions. Working collaboratively with the community of Cape Dorset since October, 2003, we present the results of 30 semi-directed interviews, 5 sea ice trips, and 2 focus groups to provide a baseline understanding of local freezing processes (near-shore, open water, sea ice thickening, landfast ice, floe edge, and tidal cracks), melting processes (snow melt, water accumulation and drainage, break-up, and cracks/leads), wind influences on sea ice (wind direction and strength affecting sea ice formation, and movement), and current influences on sea ice (tidal variations and current strength affecting sea ice formation, movement, and polynya size/location). Strong emphasis is placed on Inuktitut terminology and spatial delineations of localised ice conditions and features. Therefore, this paper provides insights into local scale ice conditions and dynamics around Cape Dorset that are not captured in regional scale studies of Hudson Bay and/or Hudson Strait. Results have the potential to inform future research efforts on local/regional sea ice monitoring, the relationship between Inuit knowledge, language, and the environment, and addressing community interests through targeted studies.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142213 ◽  
Author(s):  
Karyn D. Rode ◽  
Ryan R. Wilson ◽  
Eric V. Regehr ◽  
Michelle St. Martin ◽  
David C. Douglas ◽  
...  

1985 ◽  
Vol 63 (6) ◽  
pp. 1516-1517 ◽  
Author(s):  
N. J. Lunn ◽  
G. B. Stenhouse

We observed a case of cannibalism by a 23-year-old adult male polar bear in very poor physical condition on Southampton Island, N.W.T. It had apparently killed an adult female and was feeding on the carcass. Cannibalism among polar bears does occur under natural conditions. It is difficult to document how often this occurs and of what ecological significance it might be.


Sign in / Sign up

Export Citation Format

Share Document