spring sea ice
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 15 (10) ◽  
pp. 4909-4927
Author(s):  
Isolde A. Glissenaar ◽  
Jack C. Landy ◽  
Alek A. Petty ◽  
Nathan T. Kurtz ◽  
Julienne C. Stroeve

Abstract. In the Arctic, multi-year sea ice is being rapidly replaced by seasonal sea ice. Baffin Bay, situated between Greenland and Canada, is part of the seasonal ice zone. In this study, we present a long-term multi-mission assessment (2003–2020) of spring sea ice thickness in Baffin Bay from satellite altimetry and sea ice charts. Sea ice thickness within Baffin Bay is calculated from Envisat, ICESat, CryoSat-2, and ICESat-2 freeboard estimates, alongside a proxy from the ice chart stage of development that closely matches the altimetry data. We study the sensitivity of sea ice thickness results estimated from an array of different snow depth and snow density products and methods for redistributing low-resolution snow data onto along-track altimetry freeboards. The snow depth products that are applied include a reference estimated from the Warren climatology, a passive microwave snow depth product, and the dynamic snow scheme SnowModel-LG. We find that applying snow depth redistribution to represent small-scale snow variability has a considerable impact on ice thickness calculations from laser freeboards but was unnecessary for radar freeboards. Decisions on which snow loading product to use and whether to apply snow redistribution can lead to different conclusions on trends and physical mechanisms. For instance, we find an uncertainty envelope around the March mean sea ice thickness of 13 % for different snow depth/density products and redistribution methods. Consequently, trends in March sea ice thickness from 2003–2020 range from −23 to 17 cm per decade, depending on which snow depth/density product and redistribution method is applied. Over a longer timescale, since 1996, the proxy ice chart thickness product has demonstrated statistically significant thinning within Baffin Bay of 7 cm per decade. Our study provides further evidence for long-term asymmetrical trends in Baffin Bay sea ice thickness (with −17.6 cm per decade thinning in the west and 10.8 cm per decade thickening in the east of the bay) since 2003. This asymmetrical thinning is consistent for all combinations of snow product and processing method, but it is unclear what may have driven these changes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254418
Author(s):  
Carin J. Ashjian ◽  
Stephen R. Okkonen ◽  
Robert G. Campbell ◽  
Philip Alatalo

Interannual variability in euphausiid (krill) abundance and population structure and associations of those measures with environmental drivers were investigated in an 11-year study conducted in late August–early September 2005–2015 in offshelf waters (bottom depth > 40 m) in Barrow Canyon and the Beaufort Sea just downstream of Distributed Biological Observatory site 5 (DBO5) near Pt. Barrow, Alaska. Statistically-significant positive correlations were observed among krill population structure (proportion of juveniles and adults), the volume of Late Season Melt Water (LMW), and late-spring Chukchi Sea sea ice extent. High proportions of juvenile and adult krill were seen in years with larger volumes of LMW and greater spring sea ice extents (2006, 2009, 2012–2014) while the converse, high proportions of furcilia, were seen in years with smaller volumes of LMW and lower spring sea ice extent (2005, 2007, 2010, 2011, 2015). These different life stage, sea ice and water mass regimes represent integrated advective responses to mean fall and/or spring Chukchi Sea winds, driven by prevailing atmospheric pressure distributions in the two sets of years. In years with high proportions of juveniles and adults, late-spring and preceding-fall winds were weak and variable while in years with high proportions of furcilia, late-spring and preceding-fall winds were strong, easterly and consistent. The interaction of krill life history with yearly differences in the northward transports of krill and water masses along with sea ice retreat determines the population structure of late-summer krill populations in the DBO5 region near Pt. Barrow. Years with higher proportions of mature krill may provide larger prey to the Pt. Barrow area bowhead whale prey hotspot. The characteristics of prey near Pt. Barrow is dependent on krill abundance and size, large-scale environmental forcing, and interannual variability in recruitment success of krill in the Bering Sea.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Anna J. Pieńkowski ◽  
Katrine Husum ◽  
Simon T. Belt ◽  
Ulysses Ninnemann ◽  
Denizcan Köseoğlu ◽  
...  

AbstractThe cryospheric response to climatic warming responsible for recent Arctic sea ice decline can be elucidated using marine geological archives which offer an important long-term perspective. The Holocene Thermal Maximum, between 10 and 6 thousand years ago, provides an opportunity to investigate sea ice during a warmer-than-present interval. Here we use organic biomarkers and benthic foraminiferal stable isotope data from two sediment cores in the northernmost Barents Sea (>80 °N) to reconstruct seasonal sea ice between 11.7 and 9.1 thousand years ago. We identify the continued persistence of sea-ice biomarkers which suggest spring sea ice concentrations as high as 55%. During the same period, high foraminiferal oxygen stable isotopes and elevated phytoplankton biomarker concentrations indicate the influence of warm Atlantic-derived bottom water and peak biological productivity, respectively. We conclude that seasonal sea ice persisted in the northern Barents Sea during the Holocene Thermal Maximum, despite warmer-than-present conditions and Atlantic Water inflow.


2021 ◽  
Author(s):  
Isolde A. Glissenaar ◽  
Jack C. Landy ◽  
Alek A. Petty ◽  
Nathan T. Kurtz ◽  
Julienne C. Stroeve

Abstract. In the Arctic, multi-year sea ice is being rapidly replaced by seasonal sea ice. Baffin Bay, situated between Greenland and Canada, is part of the seasonal ice zone. In this study, we present a long-term multi-mission assessment (2003–2020) of spring sea ice thickness in Baffin Bay from satellite altimetry and sea ice charts. Sea ice thickness within Baffin Bay is calculated from Envisat, ICESat, CryoSat-2 and ICESat-2 freeboard estimates, alongside a proxy from the ice chart stage of development that closely matches the altimetry data. We study the sensitivity of sea ice thickness results estimated from an array of different snow depth and snow density products and methods for redistributing low resolution snow data onto along-track altimetry freeboards. The snow depth products that are applied include a reference estimated from the Warren climatology, a passive microwave snow depth product, and the dynamic snow scheme SnowModel-LG. We find that applying snow depth redistribution to represent small-scale snow variability has a considerable impact on ice thickness calculations from laser freeboards but was unnecessary for radar freeboards. Decisions on which snow loading product to use and whether to apply snow redistribution can lead to different conclusions on trends and physical mechanisms. For instance, we find an uncertainty envelope around the March mean sea ice thickness of 13 % for different snow depth/density products and redistribution methods. Consequently, trends in March sea ice thickness from 2003–2020 range from −23 cm/dec to 17 cm/dec, depending on which snow depth/density product and redistribution method is applied. Over a longer timescale, since 1996, the proxy ice chart thickness product demonstrates statistically significant thinning within Baffin Bay of 7 cm/dec. Our study provides further evidence for long-term asymmetrical trends in Baffin Bay sea ice thickness (with −17.6 cm/dec thinning in the west and 10.8 cm/dec thickening in the east of the bay) since 2003. This asymmetrical thinning is consistent for all combinations of snow product and processing method, but it is unclear what may have driven these changes.


2021 ◽  
Author(s):  
Tingting Han ◽  
Minghua Zhang ◽  
Jiawen Zhu ◽  
Botao Zhou ◽  
Shangfeng Li

2021 ◽  
Author(s):  
Youcheng Bai ◽  
Marie-Alexandrine Sicre ◽  
Jian Ren ◽  
Bassem Jalali ◽  
Hongliang Li ◽  
...  

<p>High-resolution palaeo-climate records documenting sea ice extent over the Industrial Era is an important source of information to fully understand the emergence and magnitude of on-going changes and better predict future climate evolution of the Arctic Ocean. In this study, source-specific highly branched isoprenoids (HBIs) and phytosterols were measured in multicores retrieved from the Chukchi shelf region to document the history of seasonal sea ice in this area since the beginning of the Industrial Era. HBIs at the end of the 19th century (AD 1865-1875) point to a retreat of the sea ice edge and rapid return to colder conditions. After 1920-1930 AD, proxy records indicate a steady sea ice retreat reaching a maximum in the 1990s. Sympagic biomarker IP<sub>25</sub> and HBI II were generally low during negative Arctic Oscillation (AO) (i.e., before 1920s) while higher values were found during positive AO, in particular in the 1990s. Our data also suggest a role of remote ocean circulation features.</p><p>Among existing indices for semi-quantitative of sea ice concentration, the H-Print % sea ice index seems to generally perform less than so-called phytoplankton marker-IP<sub>25</sub> (PIP<sub>25</sub>) index to estimate spring sea ice concentration (SpSIC). However, P<sub>B</sub>IP<sub>25</sub>-derived SpSIC better reproduce decadal scale variability and the long-term sea ice decline since the mid-20th century. Our results also highlight the lack of data for improving the PIP<sub>25</sub> and their relationship to sea ice.</p>


2021 ◽  
Vol 25 (1) ◽  
pp. 76-93
Author(s):  
Gerald V. Frost ◽  
Uma S. Bhatt ◽  
Matthew J. Macander ◽  
Amy S. Hendricks ◽  
M. Torre Jorgenson

Abstract Alaska’s Yukon–Kuskokwim Delta (YKD) is among the Arctic’s warmest, most biologically productive regions, but regional decline of the normalized difference vegetation index (NDVI) has been a striking feature of spaceborne Advanced High Resolution Radiometer (AVHRR) observations since 1982. This contrast with “greening” prevalent elsewhere in the low Arctic raises questions concerning climatic and biophysical drivers of tundra productivity along maritime–continental gradients. We compared NDVI time series from AVHRR, the Moderate Resolution Imaging Spectroradiometer (MODIS), and Landsat for 2000–19 and identified trend drivers with reference to sea ice and climate datasets, ecosystem and disturbance mapping, field measurements of vegetation, and knowledge exchange with YKD elders. All time series showed increasing maximum NDVI; however, whereas MODIS and Landsat trends were very similar, AVHRR-observed trends were weaker and had dissimilar spatial patterns. The AVHRR and MODIS records for time-integrated NDVI were dramatically different; AVHRR indicated weak declines, whereas MODIS indicated strong increases throughout the YKD. Disagreement largely arose from observations during shoulder seasons, when there is partial snow cover and very high cloud frequency. Nonetheless, both records shared strong correlations with spring sea ice extent and summer warmth. Multiple lines of evidence indicate that, despite frequent disturbances and high interannual variability in spring sea ice and summer warmth, tundra productivity is increasing on the YKD. Although climatic drivers of tundra productivity were similar to more continental parts of the Arctic, our intercomparison highlights sources of uncertainty in maritime areas like the YKD that currently, or soon will, challenge historical concepts of “what is Arctic.”


2020 ◽  
Author(s):  
Olivia Lee ◽  
Lisa Sheffield Guy ◽  
Frank Johnson ◽  
Vera Metcalf ◽  
Hajo Eicken ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 2459-2483
Author(s):  
Maria-Elena Vorrath ◽  
Juliane Müller ◽  
Lorena Rebolledo ◽  
Paola Cárdenas ◽  
Xiaoxu Shi ◽  
...  

Abstract. In the last decades, changing climate conditions have had a severe impact on sea ice at the western Antarctic Peninsula (WAP), an area rapidly transforming under global warming. To study the development of spring sea ice and environmental conditions in the pre-satellite era we investigated three short marine sediment cores for their biomarker inventory with a particular focus on the sea ice proxy IPSO25 and micropaleontological proxies. The core sites are located in the Bransfield Strait in shelf to deep basin areas characterized by a complex oceanographic frontal system, coastal influence and sensitivity to large-scale atmospheric circulation patterns. We analyzed geochemical bulk parameters, biomarkers (highly branched isoprenoids, glycerol dialkyl glycerol tetraethers, sterols), and diatom abundances and diversity over the past 240 years and compared them to observational data, sedimentary and ice core climate archives, and results from numerical models. Based on biomarker results we identified four different environmental units characterized by (A) low sea ice cover and high ocean temperatures, (B) moderate sea ice cover with decreasing ocean temperatures, (C) high but variable sea ice cover during intervals of lower ocean temperatures, and (D) extended sea ice cover coincident with a rapid ocean warming. While IPSO25 concentrations correspond quite well to satellite sea ice observations for the past 40 years, we note discrepancies between the biomarker-based sea ice estimates, the long-term model output for the past 240 years, ice core records, and reconstructed atmospheric circulation patterns such as the El Niño–Southern Oscillation (ENSO) and Southern Annular Mode (SAM). We propose that the sea ice biomarker proxies IPSO25 and PIPSO25 are not linearly related to sea ice cover, and, additionally, each core site reflects specific local environmental conditions. High IPSO25 and PIPSO25 values may not be directly interpreted as referring to high spring sea ice cover because variable sea ice conditions and enhanced nutrient supply may affect the production of both the sea-ice-associated and phytoplankton-derived (open marine, pelagic) biomarker lipids. For future interpretations we recommend carefully considering individual biomarker records to distinguish between cold sea-ice-favoring and warm sea-ice-diminishing environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document