The Weddell Sea Expedition 2019

Author(s):  
John Shears ◽  
Julian Dowdeswell ◽  
Freddie Ligthelm ◽  
Paul Wachter

<p>The Weddell Sea Expedition 2019 (WSE) was conceived with dual aims: (i) to undertake a comprehensive international inter-disciplinary programme of science centred in the waters around Larsen C Ice Shelf, western Weddell Sea; and (ii) to search for, survey and image the wreck of Sir Ernest Shackleton’s Endurance, which sank in the Weddell Sea in 1915. </p><p>The 6-week long expedition, funded by the Flotilla Foundation, required the use of a substantial ice-strengthened vessel given the very difficult sea-ice conditions encountered in the Weddell Sea, and especially in its central and western parts. The South African ship SA Agulhas II was chartered for its Polar Class 5 icebreaking capability and design as a scientific research vessel. The expedition was equipped with state-of-the-art Autonomous Underwater Vehicles (AUVs) and a Remotely Operated Vehicle (ROV) which were capable of deployment to waters more than 3,000 m deep, thus making the Larsen C continental shelf and slope, and the Endurance wreck site, accessible. During the expedition, a suite of passive and active remote-sensing data, including TerraSAR-X radar images delivered in near real-time, was provided to the ice-pilot onboard the SA Agulhas II. These data were instrumental for safe vessel navigation in sea ice and the detection and tracking of icebergs and ice floes of scientific interest.</p><p>The scientific programme undertaken by the WSE was very successful and produced many new geological, geophysical, marine biological and oceanographic observations from a part of the Weddell Sea that has been little studied previously, particularly the area east of Larsen C Ice Shelf. The expedition also reached the sinking location of Shackleton’s Endurance, where the presence of open-water sea ice leads allowed the deployment of an AUV to the ocean floor to try and locate and survey the wreck. Unfortunately, SA Agulhas II later lost communication with the AUV, and deteriorating weather and sea ice conditions meant that the search had to be called off.</p>

2020 ◽  
Vol 32 (4) ◽  
pp. 301-313 ◽  
Author(s):  
Julian A. Dowdeswell ◽  
Christine L. Batchelor ◽  
Boris Dorschel ◽  
Toby J. Benham ◽  
Frazer D.W. Christie ◽  
...  

AbstractMarine-geophysical evidence on sea-floor morphology and shallow acoustic stratigraphy are used to examine the substrate around the location at which Sir Ernest Shackleton's ship Endurance sank in 1915 and on the continental slope-shelf sedimentary system above this site in the western Weddell Sea. Few signs of turbidity-current and mass-wasting activity are found near or upslope of the wreck site, and any such activity was probably linked to full-glacial higher-energy conditions when ice last advanced across the continental shelf. The wreck is well below the maximum depth of iceberg keels and will not have been damaged by ice-keel ploughing. The wreck has probably been draped by only a few centimetres of fine-grained sediment since it sank in 1915. Severe modern sea-ice conditions hamper access to the wreck site. Accessing and investigating the wreck of Endurance in the Weddell Sea therefore represents a significant challenge. An ice-breaking research vessel is required, and even this would not guarantee that the site could be reached. Heavy sea-ice cover at the wreck site, similar to that encountered by Agulhus II during the Weddell Sea Expedition 2019, would also make the launch and recovery of autonomous underwater vehicles and remotely operated vehicles deployed to investigate the Endurance wreck problematic.


2001 ◽  
Vol 33 ◽  
pp. 425-429 ◽  
Author(s):  
S. F. Ackley ◽  
C. A. Geiger ◽  
J. C. King ◽  
E. C. Hunke ◽  
J. Comiso

AbstractThe Ronne polynya formed in the Weddell Sea, Antarctica, during the period November 1997−February 1998 to an extent not seen previously in the 25 years of all-weather satellite observations. The vessel HMS Endurance traversed the polynya region and took sea-ice, physical oceanographic and meteorological measurements during January and early February 1998. These observations, together with satellite imagery and weather records, were analyzed to determine the causes of the anomalous condition observed and to provide comparisons for numerical modeling experiments. The polynya area, analyzed from satellite imagery, showed a linear, nearly constant, increase with time from mid-November 1997 through February 1998. It had a maximum open-water area of 3 × 105 km2 and extended 500 km north of the Ronne Ice Shelf (at 76° S) to 70° S. The ice and snow structure of floes at the northern edge of the polynya showed the ice there had formed in the previous mid- to late winter (October 1997 or earlier) and had been advected there either from the eastern Weddell Sea or from the front of the Ronne Ice Shelf. Analyses of the wind fields showed anomalous spring-summer wind fields in the polynya year, with a strong southerly to southwesterly component compared to the mean easterly winds typical of summer conditions. These southerly wind conditions, in both magnitude and direction, therefore account for the drift of ice northward. The predominant summer easterly winds usually fill the southern Weddell Sea with ice from the east, and the high-albedo surfaces reflect the solar radiation, preventing warming of the surface ocean waters and consequent sea-ice melt. Instead, high incident solar radiation from November 1997 to February 1998 was absorbed by the open water, rather than being reflected, thereby both melting ice and preventing ice formation, and thereby sustaining the polynya. We conclude that open-water-albedo feedback is necessary to allow the observed polynya formation, since similar drift conditions prevail in winter (arising from southerly winds also) and usually result in extensive new ice formation in front of the Ronne Ice Shelf. The strong southerly winds therefore have quite opposing seasonal effects, leading to high ice production in winter as usually found, and extensive open water if they occur in spring and summer, as seen in this atypical event in 1997/98. In this case, the atypical southerly winds may be associated with an El Niño-Southern Oscillation (ENSO)-induced atmospheric circulation pattern.


2012 ◽  
Vol 58 (208) ◽  
pp. 325-339 ◽  
Author(s):  
Christine Wesche ◽  
Wolfgang Dierking

AbstractA pixel-based methodology has been established for automatic identification of icebergs in satellite synthetic aperture radar (SAR) images acquired during different seasons and for different sea- ice conditions. This includes, in particular, smaller icebergs (longitudinal axis 100 m to 18.5 km). Investigations were carried out for two test regions located in the Weddell Sea, Antarctica, using images of the Envisat Advanced SAR (ASAR) at HH polarization and of the European Remote-sensing Satellite-2 (ERS-2) SAR (VV-polarized). From the former, a sequence of Image Mode and Wide Swath Mode data are available for the whole of 2006. The ERS data were acquired around the tip of the Antarctic Peninsula in spring and summer months of the years 2000-03. The minimum size of icebergs that could be identified in the IM images was <0.02 km2. Radar backscattering coefficients of icebergs, sea ice and open water were determined separately. We demonstrate that the error in separating icebergs from their surroundings (sea ice or open water) depends on meteorological, oceanographic and sea-ice conditions. Also the pre-processing of the SAR images (e.g. speckle reduction) influences iceberg recognition. Differences in detection accuracy as a function of season could not be substantiated for our test sites, but have in general to be taken into account, as results of other investigations indicate.


1987 ◽  
Vol 9 ◽  
pp. 85-91 ◽  
Author(s):  
T.H. Jacka ◽  
I. Allison ◽  
R. Thwaites ◽  
J.C. Wilson

A cruise to Antarctic waters from late October to mid December 1985 provided the opportunity to study characteristics of the seasonal sea ice from a time close to that of maximum extent through early spring decay. The area covered by the observations extends from the northern ice limit to the Antarctic coast between long. 50 °E and 80 E. Shipboard observations included ice extent, type and thickness, and snow depth. Ice cores were drilled at several sites, providing data on salinity and structure.The observations verify the highly dynamic and divergent nature of the Antarctic seasonal sea-ice 2one. Floe size and thickness varied greatly at all locations, although generally increasing from north to south. A high percentage of the total ice mass exhibited a frazil crystal structure, indicative of the existence of open water in the vicinity.The ground based observations are compared with observations from satellite sensors. The remote sensing data include the visual channel imagery from NOAA 6, NOAA 9, and Meteor 11. Comparisons are made with the operational ice charts produced (mainly from satellite data) by the Joint Ice Center, and with the analyses available by facsimile from Molodezhnaya.


2013 ◽  
Vol 5 (1) ◽  
pp. 209-226 ◽  
Author(s):  
A. Behrendt ◽  
W. Dierking ◽  
E. Fahrbach ◽  
H. Witte

Abstract. The presented database contains time-referenced sea ice draft values from upward looking sonar (ULS) measurements in the Weddell Sea, Antarctica. The sea ice draft data can be used to infer the thickness of the ice. They were collected during the period 1990–2008. In total, the database includes measurements from 13 locations in the Weddell Sea and was generated from more than 3.7 million measurements of sea ice draft. The files contain uncorrected raw drafts, corrected drafts and the basic parameters measured by the ULS. The measurement principle, the data processing procedure and the quality control are described in detail. To account for the unknown speed of sound in the water column above the ULS, two correction methods were applied to the draft data. The first method is based on defining a reference level from the identification of open water leads. The second method uses a model of sound speed in the oceanic mixed layer and is applied to ice draft in austral winter. Both methods are discussed and their accuracy is estimated. Finally, selected results of the processing are presented. The data can be downloaded from doi:10.1594/PANGAEA.785565.


2012 ◽  
Vol 6 (2) ◽  
pp. 479-491 ◽  
Author(s):  
A. I. Weiss ◽  
J. C. King ◽  
T. A. Lachlan-Cope ◽  
R. S. Ladkin

Abstract. This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of αi = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the western Weddell Sea was αi = 0.75 ± 0.05. In the southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of αi = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow covered pack ice had the highest albedo values. All sea ice areas consisted of a mixture of a large range of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations do not work well for areas with new, young ice.


2021 ◽  
Author(s):  
Cara Nissen ◽  
Ralph Timmermann ◽  
Mario Hoppema ◽  
Judith Hauck

&lt;p&gt;Deep and bottom water formation regions have long been recognized to be efficient vectors for carbon transfer to depth, leading to carbon sequestration on time scales of centuries or more. Precursors of Antarctic Bottom Water (AABW) are formed on the Weddell Sea continental shelf as a consequence of buoyancy loss of surface waters at the ice-ocean or atmosphere-ocean interface, which suggests that any change in water mass transformation rates in this area affects global carbon cycling and hence climate. Many of the models previously used to assess AABW formation in present and future climates contained only crude representations of ocean-ice shelf interaction. Numerical simulations often featured spurious deep convection in the open ocean, and changes in carbon sequestration have not yet been assessed at all. Here, we present results from the global model FESOM-REcoM, which was run on a mesh with elevated grid resolution in the Weddell Sea and which includes an explicit representation of sea ice and ice shelves. Forcing this model with ssp585 scenario output from the AWI Climate Model, we assess changes over the 21&lt;sup&gt;st&lt;/sup&gt; century in the formation and northward export of dense waters and the associated carbon fluxes within and out of the Weddell Sea. We find that the northward transport of dense deep waters (&amp;#963;&lt;sub&gt;2&lt;/sub&gt;&gt;37.2 kg m&lt;sup&gt;-3&lt;/sup&gt; below 2000 m) across the SR4 transect, which connects the tip of the Antarctic Peninsula with the eastern Weddell Sea, declines from 4 Sv to 2.9 Sv by the year 2100. Concurrently, despite the simulated continuous increase in surface ocean CO&lt;sub&gt;2&lt;/sub&gt; uptake in the Weddell Sea over the 21&lt;sup&gt;st&lt;/sup&gt; century, the carbon transported northward with dense deep waters declines from 3.5 Pg C yr&lt;sup&gt;-1&lt;/sup&gt; to 2.5 Pg C yr&lt;sup&gt;-1&lt;/sup&gt;, demonstrating the dominant role of dense water formation rates for carbon sequestration. Using the water mass transformation framework, we find that south of SR4, the formation of downwelling dense waters declines from 3.5 Sv in the 1990s to 1.6 Sv in the 2090s, a direct result of the 18% lower sea-ice formation in the area, the increased presence of modified Warm Deep Water on the continental shelf, and 50% higher ice shelf basal melt rates. Given that the reduced formation of downwelling water masses additionally occurs at lighter densities in FESOM-REcoM in the 2090s, this will directly impact the depth at which any additional oceanic carbon uptake is stored, with consequences for long-term carbon sequestration.&lt;/p&gt;


2004 ◽  
Vol 39 ◽  
pp. 276-282 ◽  
Author(s):  
Andrew M. Rankin ◽  
Eric W. Wolff ◽  
Robert Mulvaney

AbstractIt has recently been shown that much sea-salt aerosol around the coast of Antarctica is generated not from open water, but from the surface of newly formed sea ice. Previous interpretations of ice-core records have disregarded the sea-ice surface as a source of sea salt. The majority of sea-salt aerosol at Halley research station originates from frost flowers rather than open water, and the seasonal cycle of sea salt in aerosol at Halley appears to be controlled by ice production in the Weddell Sea, as well as variations in wind speed. Frost flowers are also an important source of aerosol at Siple Dome, suggesting that variations in sea-salt concentrations in the core, and other cores drilled in similar locations, may be reflecting changes in sea-ice production rather than changes in transportation patterns. For Greenland cores, and those from low-accumulation inland sites in Antarctica, it is not simple to calculate the proportion of sea salt originating from frost flowers rather than open water. However, modelling studies suggest that a sea-ice surface source contributed much of the flux of sea salt to these sites in glacial periods, suggesting that interpretations of ice-core records from these locations should also be revisited.


1983 ◽  
Vol 4 ◽  
pp. 246-252 ◽  
Author(s):  
Joachim Schwarz

In the austral winter of 1979-80, a German Antarctic expedition was sent by ship to the Filchner and Ronne ice shelves in order to find a suitable site for the establishment of a permanent Antarctic station. During this expedition, investigations were carried out on sea ice in the Weddell Sea in order to evaluate the accessibility of the site for icebreaking ships which are intended to convey construction materials to the site and, later on, to supply the station annually.This paper covers the results of investigations on sea-ice conditions during the voyage along the ice shelves from Cape Fiske (at the base of the Antarctic Peninsula) to Atka Bay with emphasis on sea-ice conditions in the area about 100 km north-west of Berkner Island (Fig.1.). In addition to the drift conditions (speed, direction), a special feature of multi-year sea ice is described. The main part of the paper deals with mechanical properties such as flexural strength, uniaxial compressive strength and Young’s modulus of columnar-grained sea ice from the southern border of the Weddell Sea. Salinities and temperatures were measured over the depth of the ice and used for calculating the flexural strength and the Young’s modulus of the ice. The uniaxial compressive strength was investigated as a function of strain-rate, brine volume and temperature on a closed-loop testing machine on samples which were carried back from Antarctica to Hamburg.


1990 ◽  
Vol 14 ◽  
pp. 338
Author(s):  
H.H. Hellmer

The production of Antarctic Bottom Water is mainly influenced by Ice Shelf Water, which is formed through the modification of shelf water masses under huge ice shelves. To simulate this modification a two-dimensional thermohaline circulation model has been developed for a section perpendicular to the ice-shelf edge. Hydrographic data from the Filchner Depression enter into the model as boundary conditions. In the outflow region they also serve as a verification of model results. The standard solution reveals two circulation cells. The dominant one transports shelf water near the bottom toward the grounding line, where it begins to ascend along the inclined ice shelf. The contact with the ice shelf causes melting with a maximum rate of 1.5 m a−1 at the grounding line. Freezing and therefore the accumulation of “sea ice” at the bottom of the ice shelf occurs at the end of the melting zone at a rate on the order of 0.1 ma−1. Both rates are comparable with values estimated or predicted by models concerning ice-shelf dynamics. As one example of model sensitivity to changing boundary conditions, a higher sea-ice production in the southern Weddell Sea, as might be expected for a general climatic cooling event, is assumed. The resultant decrease/ increase in temperature/salinity of the inflow (Western Shelf Water) reduces the circulation under the ice shelf and therefore the outflow of Ice Shelf Water by 40%. The maximum melting and freezing rate decreases by 0.1 ma−1 and 0.01 m a−1, respectively. and the freezing zone shifts toward the grounding line by 100 km. In general the intensity of the circulation cells, the characteristics of Ice Shelf Water, the distribution of melting and freezing zones and the melting and freezing rates differ from the standard results with changing boundary conditions. These are the temperature and salinity of the inflow, the surface temperature at the top, and the extension and morphology of the ice shelf.


Sign in / Sign up

Export Citation Format

Share Document