scholarly journals Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

2017 ◽  
Vol 53 (5) ◽  
Author(s):  
G. Aarts ◽  
J. Aichelin ◽  
C. Allton ◽  
R. Arnaldi ◽  
S. A. Bass ◽  
...  
2018 ◽  
Vol 172 ◽  
pp. 01001
Author(s):  
Alexandre Lebedev

The study of heavy flavor production in proton-nucleus and nucleus-nucleus collisions is a sensitive probe of the hot and dense matter created in such collisions. Installation of silicon vertex detectors in the PHENIX experiment, and increased performance of the BNL RHIC collider allowed collection of large amount of data on heavy flavor production in small colliding systems. In this talk we will present recent PHENIX results on open heavy flavor and quarkonia production in p+p, p+A, d+A, and He3+A colliding systems in a broad rapidity range, and discuss how these measurements help us to better understand all stages of nuclear collisions at high energy.


2018 ◽  
Vol 172 ◽  
pp. 04004
Author(s):  
Cesar L. da Silva

The use of probes containing heavy quarks is one of the pillars for the study of medium formed in high energy nuclear collisions. The conceptual ideas formulated more than two decades ago, such as quark mass hierarchy of the energy that the probe lose in the media and color screening of bound heavy quarkonia states, have being challenged by the measurements performed at RHIC and LHC. A summary of the most recent experimental observations involving charm and bottom quarks in pp, pA, and AA collisions from collisions energies extending from √sNN =200 GeV to 8 TeV is presented. This manuscript also discuss possibilities of new measurements which can be at reach with increased statistics and detector upgrades.


Author(s):  
Takashi Hachiya

Heavy flavor production is a sensitive probe of the initial gluon density in the nucleon and is modified by the entire evolution of the hot quark and gluon medium created in high-energy nucleus–nucleus collisions. Besides, it is a process that can be calculated by perturbative QCD because of their large mass. The PHENIX experiment at RHIC studied the heavy flavor productions for a broad momentum and rapidity ranges using single leptons from the semileptonic decay of charm and bottom hadrons, and dileptons from [Formula: see text] decays in [Formula: see text], [Formula: see text]A, and Au [Formula: see text] Au collisions at [Formula: see text][Formula: see text]200[Formula: see text]GeV. In these proceedings, the recent experimental results in [Formula: see text], Au [Formula: see text] Au, and the small collision systems are presented and the heavy flavor productions and their modifications are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Helmut Satz

Quarkonium production has been considered as a tool to study the medium formed in high-energy nuclear collisions, assuming that the formation of a hot and dense environment modifies the production pattern observed in elementary collisions. The basic features measured there are the relative fractions of hidden to open heavy flavor and the relative fractions of the different hidden heavy flavor states. Hence the essential question is if and how these quantities are modified in nuclear collisions. We show how the relevant data must be calibrated; that is, what reference has to be used, in order to determine this in a model-independent way.


Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 278-307 ◽  
Author(s):  
Xiaofeng Luo ◽  
Shusu Shi ◽  
Nu Xu ◽  
Yifei Zhang

With the aim of understanding the phase structure of nuclear matter created in high-energy nuclear collisions at finite baryon density, a beam energy scan program has been carried out at Relativistic Heavy Ion Collider (RHIC). In this mini-review, most recent experimental results on collectivity, criticality and heavy flavor productions will be discussed. The goal here is to establish the connection between current available data and future heavy-ion collision experiments in a high baryon density region.


2020 ◽  
Vol 235 ◽  
pp. 04002 ◽  
Author(s):  
Xuan Li ◽  
Ivan Vitev ◽  
Melynda Brooks ◽  
Lukasz Cincio ◽  
J. Matthew Durham ◽  
...  

The proposed high-energy and high-luminosity Electron–Ion Collider (EIC) will provide one of the cleanest environments to precisely determine the nuclear parton distribution functions (nPDFs) in a wide x–Q2 range. Heavy flavor production at the EIC provides access to nPDFs in the poorly constrained high Bjorken-x region, allows us to study the quark and gluon fragmentation processes, and constrains parton energy loss in cold nuclear matter. Scientists at the Los Alamos National Laboratory are developing a new physics program to study heavy flavor production, flavor tagged jets, and heavy flavor hadron-jet correlations in the nucleon/nucleus going direction at the future EIC. The proposed measurements will provide a unique way to explore the flavor dependent fragmentation functions and energy loss in a heavy nucleus. They will constrain the initial-state effects that are critical for the interpretation of previous and ongoing heavy ion measurements at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We show an initial conceptual design of the proposed Forward Silicon Tracking (FST) detector at the EIC, which is essential to carry out the heavy flavor measurements. We further present initial feasibility studies/simulations of heavy flavor hadron reconstruction using the proposed FST.


2019 ◽  
Vol 982 ◽  
pp. 675-678 ◽  
Author(s):  
A. Beraudo ◽  
A. De Pace ◽  
M. Monteno ◽  
M. Nardi ◽  
F. Prino

2001 ◽  
Vol 93 (1-3) ◽  
pp. 234-237
Author(s):  
N. Armesto ◽  
M.A. Braun ◽  
A. Capella ◽  
C. Pajares ◽  
C.A. Salgado

Sign in / Sign up

Export Citation Format

Share Document