scholarly journals A New Heavy Flavor Program for the Future Electron-Ion Collider

2020 ◽  
Vol 235 ◽  
pp. 04002 ◽  
Author(s):  
Xuan Li ◽  
Ivan Vitev ◽  
Melynda Brooks ◽  
Lukasz Cincio ◽  
J. Matthew Durham ◽  
...  

The proposed high-energy and high-luminosity Electron–Ion Collider (EIC) will provide one of the cleanest environments to precisely determine the nuclear parton distribution functions (nPDFs) in a wide x–Q2 range. Heavy flavor production at the EIC provides access to nPDFs in the poorly constrained high Bjorken-x region, allows us to study the quark and gluon fragmentation processes, and constrains parton energy loss in cold nuclear matter. Scientists at the Los Alamos National Laboratory are developing a new physics program to study heavy flavor production, flavor tagged jets, and heavy flavor hadron-jet correlations in the nucleon/nucleus going direction at the future EIC. The proposed measurements will provide a unique way to explore the flavor dependent fragmentation functions and energy loss in a heavy nucleus. They will constrain the initial-state effects that are critical for the interpretation of previous and ongoing heavy ion measurements at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We show an initial conceptual design of the proposed Forward Silicon Tracking (FST) detector at the EIC, which is essential to carry out the heavy flavor measurements. We further present initial feasibility studies/simulations of heavy flavor hadron reconstruction using the proposed FST.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Joseph D. Osborn ◽  
Anthony D. Frawley ◽  
Jin Huang ◽  
Sookhyun Lee ◽  
Hugo Pereira Da Costa ◽  
...  

AbstractsPHENIX is a high energy nuclear physics experiment under construction at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (BNL). The primary physics goals of sPHENIX are to study the quark-gluon-plasma, as well as the partonic structure of protons and nuclei, by measuring jets, their substructure, and heavy flavor hadrons in $$p$$ p $$+$$ + $$p$$ p , p + Au, and Au + Au collisions. sPHENIX will collect approximately 300 PB of data over three run periods, to be analyzed using available computing resources at BNL; thus, performing track reconstruction in a timely manner is a challenge due to the high occupancy of heavy ion collision events. The sPHENIX experiment has recently implemented the A Common Tracking Software (ACTS) track reconstruction toolkit with the goal of reconstructing tracks with high efficiency and within a computational budget of 5 s per minimum bias event. This paper reports the performance status of ACTS as the default track fitting tool within sPHENIX, including discussion of the first implementation of a time projection chamber geometry within ACTS.


2007 ◽  
Vol 22 (18) ◽  
pp. 3105-3122
Author(s):  
M. B. GAY DUCATI ◽  
V. P. GONÇALVES ◽  
L. F. MACKEDANZ

The discovery of the jet quenching in central Au + Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory has provided clear evidence for the formation of strongly interacting dense matter. It has been predicted to occur due to the energy loss of high energy partons that propagate through the quark–gluon plasma. In this paper we investigate the dependence of the parton energy loss due to elastic scatterings in a parton plasma on the value of the strong coupling and its running with the evolution of the system. We analyze different prescriptions for the QCD coupling and calculate the energy and length dependence of the fractional energy loss. Moreover, the partonic quenching factor for light and heavy quarks is estimated. We found that the predicted enhancement of the heavy to light hadrons (D/π) ratio is strongly dependent on the running of the QCD coupling constant.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 140
Author(s):  
Michael J. Tannenbaum

Results from Relativistic Heavy Ion Collider Physics in 2018 and plans for the future at Brookhaven National Laboratory are presented.


2020 ◽  
Vol 70 (1) ◽  
pp. 293-321 ◽  
Author(s):  
Wei Li ◽  
Gang Wang

The interplay of quantum anomalies with strong magnetic fields and vorticity in chiral systems could lead to novel transport phenomena, such as the chiral magnetic effect (CME), the chiral magnetic wave (CMW), and the chiral vortical effect (CVE). In high-energy nuclear collisions, these chiral effects may survive the expansion of a quark–gluon plasma fireball and be detected in experiments. The experimental searches for the CME, the CMW, and the CVE have aroused extensive interest over the past couple of decades. The main goal of this article is to review the latest experimental progress in the search for these novel chiral transport phenomena at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. Future programs to help reduce uncertainties and facilitate the interpretation of the data are also discussed.


Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 278-307 ◽  
Author(s):  
Xiaofeng Luo ◽  
Shusu Shi ◽  
Nu Xu ◽  
Yifei Zhang

With the aim of understanding the phase structure of nuclear matter created in high-energy nuclear collisions at finite baryon density, a beam energy scan program has been carried out at Relativistic Heavy Ion Collider (RHIC). In this mini-review, most recent experimental results on collectivity, criticality and heavy flavor productions will be discussed. The goal here is to establish the connection between current available data and future heavy-ion collision experiments in a high baryon density region.


2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


2018 ◽  
Vol 172 ◽  
pp. 04004
Author(s):  
Cesar L. da Silva

The use of probes containing heavy quarks is one of the pillars for the study of medium formed in high energy nuclear collisions. The conceptual ideas formulated more than two decades ago, such as quark mass hierarchy of the energy that the probe lose in the media and color screening of bound heavy quarkonia states, have being challenged by the measurements performed at RHIC and LHC. A summary of the most recent experimental observations involving charm and bottom quarks in pp, pA, and AA collisions from collisions energies extending from √sNN =200 GeV to 8 TeV is presented. This manuscript also discuss possibilities of new measurements which can be at reach with increased statistics and detector upgrades.


2008 ◽  
Vol 38 (4) ◽  
pp. 535-568 ◽  
Author(s):  
Robert P. Crease

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory was the first facility to move the subfield of nuclear physics into the relativistic (very high-energy) regime. From the time of its formal proposal in 1984 to the start of its operation in 2000, it anchored a profound reconfiguration of Brookhaven's mission. This article analyzes the process by which RHIC came to seem the best solution to a problem thrust upon the Brookhaven laboratory administration by the planning and funding demands of the early 1980s, which required creative reconfiguration of resources and programs from long-established national laboratories accustomed to pursuing particular kinds of science. The RHIC story is an example of "recombinant science," as Catherine Westfall has labeled it, which does not occur as a natural outgrowth of previous research. In the recombinant science that gave birth to RHIC, the ends as well as the means arose as the result of contingencies and convergences that required researchers from multiple subfields to adapt their intentions and methods, sometimes awkwardly. Against a backdrop of limited budgets, increasing oversight, and competitive claims from other labs and projects, this case study illustrates how many strands had to come together simultaneously in RHIC, including changes in theoretical interest, experimental developments, and the existence of hardware assets---plus leadership and several lucky breaks.


Author(s):  
Brian T Love

This article provides a technical introduction to the study of collider physics by focusing on the concept of particle identification (PID). Through a general overview of the Relativistic Heavy Ion Collider (RHIC) and the Pioneering High Energy Nuclear Interaction Experiment (PHENIX), the author discusses the role of Vanderbilt University researchers in collaborative work at the Brookhaven National Laboratory. After explaining the concept of event reconstruction and centrality with graphical images of experimental results, the author outlines the time-of-flight method of particle identification in high energy physics. A final presentation of the design concept for the Multi-Gap Resistive Plate Chamber (MRPC) integrates the more traditional foundations of theoretical physics with the next generation of physics experimentation in the field.


2004 ◽  
Vol 19 (07) ◽  
pp. 1111-1118
Author(s):  
D. HARDTKE

High energy collisions of heavy nuclei at the Relativistic Heavy-Ion Collider permit the study of nuclear matter at extreme densities and temperatures. Selected experimental highlights from the early RHIC program are presented. Measurements of the total multiplicity in heavy-ion collisions show a surprising similarity to measurements in e+e- collisions after nuclear geometry is taken into account. RHIC has sufficient center-of-mass energy to use large transverse momentum particles and jets as a probe of the nuclear medium. Signatures of "jet quenching" due to radiative gluon energy loss of fast partons in a dense medium are observed for the first time at RHIC. In order to account for this energy loss, initial energy densities of 30-100 times normal nuclear matter density are required.


Sign in / Sign up

Export Citation Format

Share Document