Influence of driver’s behavior with empirical lane changing on the traffic dynamics

2022 ◽  
Vol 95 (1) ◽  
Author(s):  
Nikita Madaan ◽  
Sapna Sharma
2008 ◽  
Vol 19 (11) ◽  
pp. 1705-1715 ◽  
Author(s):  
WEI-WEI ZHANG ◽  
RUI JIANG ◽  
YAO-MING YUAN ◽  
QING-SONG WU

This paper investigates traffic dynamics of two-lane mixed traffic flow system composed of cars and buses, which are characterized by different lengths and different maximum velocities. Four lane changing regulations are studied, which reveals effect of lane changing ban, symmetric and asymmetric lane changing rules on traffic flow characteristics (flow rate, carry capability, lane changing frequency, and lane usage). We expect that our results could be useful for traffic management.


CICTP 2018 ◽  
2018 ◽  
Author(s):  
Shiqiang Cheng ◽  
Liyang Wei ◽  
Xuelan Ma ◽  
Jianfeng Shen ◽  
Jian Wang
Keyword(s):  

2015 ◽  
Vol 8 (3) ◽  
pp. 184-194 ◽  
Author(s):  
Ronghui Zhang ◽  
Fuliang Li ◽  
Xuecai Yu ◽  
Zhonghua Zhang ◽  
Feng You ◽  
...  

2002 ◽  
Vol 159 (3) ◽  
pp. 283
Author(s):  
Burd ◽  
Archer ◽  
Aranwela ◽  
Stradling

2021 ◽  
Vol 128 ◽  
pp. 103166
Author(s):  
Wissam Kontar ◽  
Tienan Li ◽  
Anupam Srivastava ◽  
Yang Zhou ◽  
Danjue Chen ◽  
...  

Author(s):  
Li Zhao ◽  
Laurence Rilett ◽  
Mm Shakiul Haque

This paper develops a methodology for simultaneously modeling lane-changing and car-following behavior of automated vehicles on freeways. Naturalistic driving data from the Safety Pilot Model Deployment (SPMD) program are used. First, a framework to process the SPMD data is proposed using various data analytics techniques including data fusion, data mining, and machine learning. Second, pairs of automated host vehicle and their corresponding front vehicle are identified along with their lane-change and car-following relationship data. Using these data, a lane-changing-based car-following (LCCF) model, which explicitly considers lane-change and car-following behavior simultaneously, is developed. The LCCF model is based on Gaussian-mixture-based hidden Markov model theory and is disaggregated into two processes: LCCF association and LCCF dissociation. These categories are based on the result of the lane change. The overall goal is to predict a driver’s lane-change intention using the LCCF model. Results show that the model can predict the lane-change event in the order of 0.6 to 1.3 s before the moment of the vehicle body across the lane boundary. In addition, the execution times of lane-change maneuvers average between 0.55 and 0.86 s. The LCCF model allows the intention time and execution time of driver’s lane-change behavior to be forecast, which will help to develop better advanced driver assistance systems for vehicle controls with respect to lane-change and car-following warning functions.


Sign in / Sign up

Export Citation Format

Share Document