A Collaborative Scheduling Lane Changing Model for Intelligent Connected Vehicles Based on Deep Reinforcement Learning

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zheyu Cui ◽  
Jianming Hu
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3864
Author(s):  
Tarek Ghoul ◽  
Tarek Sayed

Speed advisories are used on highways to inform vehicles of upcoming changes in traffic conditions and apply a variable speed limit to reduce traffic conflicts and delays. This study applies a similar concept to intersections with respect to connected vehicles to provide dynamic speed advisories in real-time that guide vehicles towards an optimum speed. Real-time safety evaluation models for signalized intersections that depend on dynamic traffic parameters such as traffic volume and shock wave characteristics were used for this purpose. The proposed algorithm incorporates a rule-based approach alongside a Deep Deterministic Policy Gradient reinforcement learning technique (DDPG) to assign ideal speeds for connected vehicles at intersections and improve safety. The system was tested on two intersections using real-world data and yielded an average reduction in traffic conflicts ranging from 9% to 23%. Further analysis was performed to show that the algorithm yields tangible results even at lower market penetration rates (MPR). The algorithm was tested on the same intersection with different traffic volume conditions as well as on another intersection with different physical constraints and characteristics. The proposed algorithm provides a low-cost approach that is not computationally intensive and works towards optimizing for safety by reducing rear-end traffic conflicts.


2021 ◽  
Vol 01 ◽  
Author(s):  
Ying Li ◽  
Chubing Guo ◽  
Jianshe Wu ◽  
Xin Zhang ◽  
Jian Gao ◽  
...  

Background: Unmanned systems have been widely used in multiple fields. Many algorithms have been proposed to solve path planning problems. Each algorithm has its advantages and defects and cannot adapt to all kinds of requirements. An appropriate path planning method is needed for various applications. Objective: To select an appropriate algorithm fastly in a given application. This could be helpful for improving the efficiency of path planning for Unmanned systems. Methods: This paper proposes to represent and quantify the features of algorithms based on the physical indicators of results. At the same time, an algorithmic collaborative scheme is developed to search the appropriate algorithm according to the requirement of the application. As an illustration of the scheme, four algorithms, including the A-star (A*) algorithm, reinforcement learning, genetic algorithm, and ant colony optimization algorithm, are implemented in the representation of their features. Results: In different simulations, the algorithmic collaborative scheme can select an appropriate algorithm in a given application based on the representation of algorithms. And the algorithm could plan a feasible and effective path. Conclusion: An algorithmic collaborative scheme is proposed, which is based on the representation of algorithms and requirement of the application. The simulation results prove the feasibility of the scheme and the representation of algorithms.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zixuan Zhang ◽  
Shengrui Zhang ◽  
Shuaiyang Jiao

Sign in / Sign up

Export Citation Format

Share Document