scholarly journals Characterization of the energy resolution and the tracking capabilities of a hybrid pixel detector with CdTe-sensor layer for a possible use in a neutrinoless double beta decay experiment

Author(s):  
Mykhaylo Filipenko ◽  
Thomas Gleixner ◽  
Gisela Anton ◽  
Jürgen Durst ◽  
Thilo Michel
2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Thilo Michel ◽  
Thomas Gleixner ◽  
Jürgen Durst ◽  
Mykhaylo Filipenko ◽  
Stefan Geißelsöder

We investigated the potential of the energy resolving hybrid pixel detector Timepix contacted to a CdTe sensor layer for the search for the neutrinoless double-beta decay ofCd. We found that a CdTe sensor layer with 3 mm thickness and 165 μm pixel pitch is optimal with respect to the effective Majorana neutrino mass (mββ) sensitivity. In simulations, we were able to demonstrate a possible reduction of the background level caused by single electrons by approximately 75% at a specific background rate of 10−3counts/(kg×keV×yr) at a detection efficiency reduction of about 23% with track analysis employing random decision forests. Exploitation of the imaging properties with track analysis leads to an improvement in sensitivity tomββby about 22%. After 5 years of measuring time, the sensitivity tomββof a 420 kg CdTe experiment (90%Cdenrichment) would be 59 meV on a 90% confidence level for a specific single-electron background rate of 10−3counts/(kg×keV×yr). Theα-particle background can be suppressed by at least about six orders of magnitude. The benefit of the hybrid pixel detector technology might be increased significantly if drift-time difference measurements would allow reconstruction of tracks in three dimensions.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012016
Author(s):  
Ioannis Katsioulas

Abstract The nature of the neutrino is a central questions in physics. The search for neutrinoless double beta decay is the most sensitive experimental approach to demonstrate that the neutrino is a Majorana particle. Observation of such a rare process demands a detector with an excellent energy resolution, extremely low background, and a large mass of a double beta decaying isotope. R2D2 aims to develop a novel spherical high-pressure TPC that meets all the above requirements. As a first step, the energy resolution of the R2D2 prototype was measured. A 1.1% (FWHM) energy resolution was achieved for 5.3 MeV α-particles in Ar:CH4 at pressure up to 1.1 bar. This is a major milestone for R2D2 and paves the way for further studies with Xe gas and the possible use of this technology for neutrinoless double beta decay searches.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Alessio Caminata ◽  
Douglas Adams ◽  
Chris Alduino ◽  
Krystal Alfonso ◽  
Frank Avignone ◽  
...  

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO 2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO 2 exposure of 86.3 kg yr , characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts / ( keV kg yr ) . In this physics run, CUORE placed a lower limit on the decay half-life of neutrinoless double beta decay of 130 Te > 1.3 · 10 25 yr (90% C.L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130 Te 2 ν β β decay with a resulting half-life of T 1 / 2 2 ν = [ 7.9 ± 0.1 ( stat . ) ± 0.2 ( syst . ) ] × 10 20 yr which is the most precise measurement of the half-life and compatible with previous results.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
D. R. Artusa ◽  
F. T. Avignone ◽  
O. Azzolini ◽  
M. Balata ◽  
T. I. Banks ◽  
...  

Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββdecay of130Te using an array of 988 TeO2crystal bolometers operated at 10 mK. The detector will contain 206 kg of130Te and have an average energy resolution of 5 keV; the projected 0νββdecay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ(9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.


Sign in / Sign up

Export Citation Format

Share Document