scholarly journals Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

Author(s):  
V. Khachatryan ◽  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
E. Asilar ◽  
...  
2017 ◽  
Vol 768 ◽  
pp. 137-162 ◽  
Author(s):  
V. Khachatryan ◽  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
E. Asilar ◽  
...  

Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


2018 ◽  
Vol 46 ◽  
pp. 1860058
Author(s):  
Ye Chen

Latest results of searches for heavy Higgs bosons in fermionic final states are presented using the CMS detector at the LHC. Results are based on pp collision data collected at centre-of-mass energies of 8 and 13 TeV which have been interpreted according to different extensions of the Standard Model such as MSSM, 2HDM, and NMSSM. These searches look for evidence of other scalar or pseudoscalar bosons, in addition to the observed SM-like 125 GeV Higgs boson, and set 95% confidence level upper limits in fermionic final states and benchmark models explored. The talk reviews briefly the major results obtained by the CMS Collaboration during Run I, and presents the most recent searches performed during Run II.


2010 ◽  
Vol 25 (40) ◽  
pp. 3335-3346
Author(s):  
D. V. NANOPOULOS

In supercritical string cosmology (SSC), a time-dependent dilaton leads to a smoothly evolving dark energy and modifies the regions of the mSUGRA parameter space where the observed value of the dark matter relic density may be obtained. In particular, the dilaton dilutes the supersymmetric dark matter density (of neutralinos) by a factor [Formula: see text] and consequently relaxes the allowed parameter mSUGRA parameter space. The final states expected at the LHC in this scenario, consist of Z bosons, Higgs bosons, and/or high energy taus. From this, it is possible to characterize these final states and determine the model parameters. Using these parameters, we determine the dark matter content and the neutralino–proton cross section. All these techniques can also be applied to determine model parameters in SSC models with different SUSY breaking scenarios.


2016 ◽  
Vol 755 ◽  
pp. 217-244 ◽  
Author(s):  
V. Khachatryan ◽  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
E. Asilar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document