scholarly journals The kinetic gas universe

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Manuel Hohmann ◽  
Christian Pfeifer ◽  
Nicoleta Voicu

AbstractA description of many-particle systems, which is more fundamental than the fluid approach, is to consider them as a kinetic gas. In this approach the dynamical variable in which the properties of the system are encoded, is the distribution of the gas particles in position and velocity space, called 1-particle distribution function (1PDF). However, when the gravitational field of a kinetic gas is derived via the Einstein-Vlasov equations, the information about the velocity distribution of the gas particles is averaged out and therefore lost. We propose to derive the gravitational field of a kinetic gas directly from its 1PDF, taking the velocity distribution fully into account. We conjecture that this refined approach could possibly account for the observed dark energy phenomenology.

1982 ◽  
Vol 27 (1) ◽  
pp. 135-148 ◽  
Author(s):  
A. J. M. Garrett

This paper is concerned with the Boltzmann collision integral for the one-particle distribution function of a test species of particle undergoing elastic collisions with particles of a second species which is in thermal equilibrium. This expression is studied as a function of the ratio of the masses of the test and host particles for the case when the test particle distribution function is isotropic in velocity space. The analysis can also be considered as referring to the zeroth-order spherical harmonic in velocity space of a general velocity distribution function. The resulting collision term, due originally to Davydov, is of Fokker–Planck form and effectively describes a diffusion in energy. The method of derivation employed here is more systematic than hitherto, and is used to calculate the first correction to the Davydov term. Differences between classical and quantum cross-sections are considered; the correction to the Davydov term is checked by means of a comparison with the exact solution of the associated eigenvalue problem for the special case of Maxwell interactions treated classically.


Sign in / Sign up

Export Citation Format

Share Document