velocity space
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 46)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Luke Stagner ◽  
William W Heidbrink ◽  
Mirko Salewski ◽  
Asger Schou Jacobsen ◽  
Benedikt Geiger

Abstract Both fast ions and runaway electrons are described by distribution functions, the understanding of which are of critical importance for the success of future fusion devices such as ITER. Typically, energetic particle diagnostics are only sensitive to a limited subsection of the energetic particle phase-space which is often insufficient for model validation. However, previous publications show that multiple measurements of a single spatially localized volume can be used to reconstruct a distribution function of the energetic particle velocity-space by using the diagnostics' velocity-space weight functions, i.e. Velocity-space Tomography. In this work we use the recently formulated orbit weight functions to remove the restriction of spatially localized measurements and present Orbit Tomography, which is used to reconstruct the 3D phase-space distribution of all energetic particle orbits in the plasma. Through a transformation of the orbit distribution, the full energetic particle distribution function can be determined in the standard {energy,pitch,r,z}-space. We benchmark the technique by reconstructing the fast-ion distribution function of an MHD-quiescent DIII-D discharge using synthetic and experimental FIDA measurements. We also use the method to study the redistribution of fast ions during a sawtooth crash at ASDEX Upgrade using FIDA measurements. Finally, a comparison between the Orbit Tomography and Velocity-space Tomography is shown.


2021 ◽  
Author(s):  
◽  
Christopher Peter Lee-Johnson

<p>The hypothesis that artificial emotion-like mechanisms can improve the adaptive performance of robots and intelligent systems has gained considerable support in recent years. While artificial emotions are typically employed to facilitate human-machine interaction, this thesis instead focuses on modelling emotions and affect in a non-social context. In particular, affective mechanisms are applied to the problem of mobile robot navigation. A three-layered reactive/deliberative controller is developed and implemented, resulting in several contributions to the field of mobile robot control. Rather than employing a reactive layer, a deliberative layer and an interface between them, the control problem is decomposed into three different conceptual spaces - position space, direction space and velocity space - with a distinct control layer applied to each. Existing directional and velocity space approaches such as the vector field histogram (VFH) and dynamic window methods employ different underlying mechanisms and terminology. This thesis unifies these approaches in order to compare and combine them. The weighted sum objective functions employed by some existing approaches that inspired the presented directional and velocity control layers are replaced by weighted products. This enables some hard constraints to be relaxed in favour of weighted contributions, potentially improving a system's flexibility without sacrificing safety (but coming at a cost to efficiency). An affect model is developed that conceptualises emotions and other affective interactions as modulations of cognitive processes. Unlike other models of affect-modulated cognition (e.g. Dorner and Hille, 1995), this model is designed specifically to address problems relating to mobile robot navigation. The role of affect in this model is to continuously adapt a controller's behaviour patterns in response to different environments and momentary conditions encountered by the robot. Affective constructs such as moods and emotions are represented as intensity values that arise from hard-coded interpretations of local stimuli, as well as from learned associations stored in global maps. They are expressed as modulations of control parameters and location-specific biases to path-planning. Extensive simulation experiments are conducted in procedurally-generated environments to assess the performance contributions of this model and its individual components.</p>


2021 ◽  
Author(s):  
◽  
Christopher Peter Lee-Johnson

<p>The hypothesis that artificial emotion-like mechanisms can improve the adaptive performance of robots and intelligent systems has gained considerable support in recent years. While artificial emotions are typically employed to facilitate human-machine interaction, this thesis instead focuses on modelling emotions and affect in a non-social context. In particular, affective mechanisms are applied to the problem of mobile robot navigation. A three-layered reactive/deliberative controller is developed and implemented, resulting in several contributions to the field of mobile robot control. Rather than employing a reactive layer, a deliberative layer and an interface between them, the control problem is decomposed into three different conceptual spaces - position space, direction space and velocity space - with a distinct control layer applied to each. Existing directional and velocity space approaches such as the vector field histogram (VFH) and dynamic window methods employ different underlying mechanisms and terminology. This thesis unifies these approaches in order to compare and combine them. The weighted sum objective functions employed by some existing approaches that inspired the presented directional and velocity control layers are replaced by weighted products. This enables some hard constraints to be relaxed in favour of weighted contributions, potentially improving a system's flexibility without sacrificing safety (but coming at a cost to efficiency). An affect model is developed that conceptualises emotions and other affective interactions as modulations of cognitive processes. Unlike other models of affect-modulated cognition (e.g. Dorner and Hille, 1995), this model is designed specifically to address problems relating to mobile robot navigation. The role of affect in this model is to continuously adapt a controller's behaviour patterns in response to different environments and momentary conditions encountered by the robot. Affective constructs such as moods and emotions are represented as intensity values that arise from hard-coded interpretations of local stimuli, as well as from learned associations stored in global maps. They are expressed as modulations of control parameters and location-specific biases to path-planning. Extensive simulation experiments are conducted in procedurally-generated environments to assess the performance contributions of this model and its individual components.</p>


Author(s):  
Kevin S McCarthy ◽  
Zheng Zheng ◽  
Hong Guo ◽  
Wentao Luo ◽  
Yen-Ting Lin

Abstract If the formation of central galaxies in dark matter haloes traces the assembly history of their host haloes, in haloes of fixed mass, central galaxy clustering may show dependence on properties indicating their formation history. Such a galaxy assembly bias effect has been investigated by Lin et al. (2016), with samples of central galaxies constructed in haloes of similar mass and with mean halo mass verified by galaxy lensing measurements, and no significant evidence of assembly bias is found from the analysis of the projected two-point correlation functions of early- and late-forming central galaxies. In this work, we extend the the investigation of assembly bias effect from real space to redshift (velocity) space, with an extended construction of early- and late-forming galaxies. We carry out halo occupation distribution modelling to constrain the galaxy-halo connection to see whether there is any sign of the effect of assembly bias. We find largely consistent host halo mass for early- and late-forming central galaxies, corroborated by lensing measurements. The central velocity bias parameters, which are supposed to characterise the mutual relaxation between central galaxies and their host haloes, are inferred to overlap between early- and late-forming central galaxies. However, we find a large amplitude of velocity bias for early-forming central galaxies (e.g. with central galaxies moving at more than 50% that of dark matter velocity dispersion inside host haloes), which may signal an assembly bias effect. A large sample with two-point correlation functions and other clustering measurements and improved modelling will help reach a conclusive result.


2021 ◽  
Vol 28 (5) ◽  
pp. 052107
Author(s):  
E. J. Kolmes ◽  
M. E. Mlodik ◽  
N. J. Fisch

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Peter J. Catto ◽  
Elizabeth A. Tolman

The velocity dependent resonant interaction of particles with applied radiofrequency (rf) waves during heating and current drive in the presence of pitch angle scattering collisions gives rise to narrow collisional velocity space boundary layers that dramatically enhance the role of collisions as recently shown by Catto (J. Plasma Phys., vol. 86, 2020, 815860302). The behaviour is a generalization of the narrow collisional boundary layer that forms during Landau damping as found by Johnston (Phys. Fluids, vol. 14, 1971, pp. 2719–2726) and Auerbach (Phys. Fluids, vol. 20, 1977, pp. 1836–1844). For a wave of parallel wave number ${k_{||}}$ interacting with weakly collisional plasma species of collision frequency $\nu$ and thermal speed ${v_{\textrm{th}}}$ , the effective collision frequency becomes of order $\nu {({k_{||}}{v_{th}}/\nu )^{2/3}} \gg \nu $ . The narrow boundary layers that arise because of the diffusive nature of the collisions allow a physically meaningful wave–particle interaction time to be defined that is the inverse of this effective collision frequency. The collisionality implied by the narrow boundary layer results in changes in the standard quasilinear treatment of applied rf fields in tokamaks while remaining consistent with causality. These changes occur because successive poloidal interactions with the rf are correlated in tokamak geometry and because the resonant velocity space dependent interactions are controlled by the spatial and temporal behaviour of the perturbed full wave fields rather than just the spatially local Landau and Doppler shifted cyclotron wave–particle resonance condition associated with unperturbed motion of the particles. The correlation of successive poloidal circuits of the tokamak leads to the appearance in the quasilinear operator of transit averaged resonance conditions localized in velocity space boundary layers that maintain negative definite entropy production.


Sign in / Sign up

Export Citation Format

Share Document