scholarly journals On the choice of the collapse operator in cosmological Continuous Spontaneous Localisation (CSL) theories

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Jérôme Martin ◽  
Vincent Vennin

AbstractThe Continuous Spontaneous Localisation (CSL) theory in the cosmological context is subject to uncertainties related to the choice of the collapse operator. In this paper, we constrain its form based on generic arguments. We show that, if the collapse operator is even in the field variables, it is unable to induce the collapse of the wavefunction. Instead, if it is odd, we find that only linear operators are such that the outcomes are distributed according to Gaussian statistics, as required by measurements of the cosmic microwave background. We discuss implications of these results for previously proposed collapse operators. We conclude that the cosmological CSL collapse operator should be linear in the field variables.

1995 ◽  
Vol 439 ◽  
pp. L29 ◽  
Author(s):  
A. Kogut ◽  
A. J. Banday ◽  
C. L. Bennett ◽  
G. Hinshaw ◽  
P. M. Lubin ◽  
...  

1997 ◽  
Vol 483 (1) ◽  
pp. 38-50 ◽  
Author(s):  
R. Bruce Partridge ◽  
Eric A. Richards ◽  
Edward B. Fomalont ◽  
K. I. Kellerman ◽  
Rogier A. Windhorst

2011 ◽  
Vol 526 ◽  
pp. L7 ◽  
Author(s):  
P. Noterdaeme ◽  
P. Petitjean ◽  
R. Srianand ◽  
C. Ledoux ◽  
S. López

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


2009 ◽  
Vol 102 (13) ◽  
Author(s):  
C. Räth ◽  
G. E. Morfill ◽  
G. Rossmanith ◽  
A. J. Banday ◽  
K. M. Górski

2002 ◽  
Vol 25 (9) ◽  
pp. 1-82
Author(s):  
M. Bersanelli ◽  
D. Maino ◽  
A. Mennella

Sign in / Sign up

Export Citation Format

Share Document