scholarly journals Photon and dilepton production in the quark-gluon plasma: perturbation theory versus lattice QCD

2005 ◽  
Vol 43 (1-4) ◽  
pp. 375-380 ◽  
Author(s):  
J.-P. Blaizot ◽  
F. Gelis

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
David Blaschke ◽  
Kirill A. Devyatyarov ◽  
Olaf Kaczmarek

In this work, we present a unified approach to the thermodynamics of hadron–quark–gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.



1995 ◽  
Vol 52 (5) ◽  
pp. 2704-2713 ◽  
Author(s):  
B. Kämpfer ◽  
O. P. Pavlenko ◽  
A. Peshier ◽  
G. Soff




2012 ◽  
Vol 85 (5) ◽  
Author(s):  
Yukinao Akamatsu ◽  
Hideki Hamagaki ◽  
Tetsuo Hatsuda ◽  
Tetsufumi Hirano




2000 ◽  
Vol 671 (1-4) ◽  
pp. 567-582 ◽  
Author(s):  
Ziwei Lin ◽  
C.M. Ko


1997 ◽  
Vol 12 (08) ◽  
pp. 1431-1464 ◽  
Author(s):  
Agustin Nieto

Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.



2014 ◽  
Vol 92 (1) ◽  
pp. 31-35 ◽  
Author(s):  
S. Somorendro Singh ◽  
Yogesh Kumar

We evolute a fireball of quark–gluon plasma (QGP) at thermal-dependent chemical potential (TDCP) through a statistical model in the pionic medium. The evolution of the fireball is explained through the free energy created in the pionic medium. We study the dilepton production at TDCP from such a fireball of QGP and hadronic phase. In this model, we take a finite quark mass dependence on temperature and parametrization factor. The temperature and factor enhance in the growth of the droplet formation of quarks and gluons as well as in the dilepton production rates. The production rate shows dilepton spectrum in the low mass region of the lepton pair as 0–1.2 GeV and in the intermediate mass region of 1.0–4.0 GeV. The rate of production is observed to be a strong increasing function of the TDCP for quark and antiquark annihilation. We compare the result of dilepton production at this TDCP with the production rate of the recent dilepton productions at zero and finite baryonic chemical potential and found the result far ahead in the production rates of dilepton at TDCP.



2020 ◽  
Vol 800 ◽  
pp. 135119 ◽  
Author(s):  
Rasmus Larsen ◽  
Stefan Meinel ◽  
Swagato Mukherjee ◽  
Peter Petreczky


Sign in / Sign up

Export Citation Format

Share Document