scholarly journals Perturbative QCD at High Temperature

1997 ◽  
Vol 12 (08) ◽  
pp. 1431-1464 ◽  
Author(s):  
Agustin Nieto

Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Varun Vaidya ◽  
Xiaojun Yao

Abstract We utilize the technology of open quantum systems in conjunction with the recently developed effective field theory for forward scattering to address the question of massless jet propagation through a weakly-coupled quark-gluon plasma in thermal equilibrium. We discuss various possible hierarchies of scales that may appear in this problem, by comparing thermal scales of the plasma with relevant scales in the effective field theory. Starting from the Lindblad equation, we derive and solve a master equation for the trans- verse momentum distribution of a massless quark jet, at leading orders both in the strong coupling and in the power counting of the effective field theory. Markovian approximation is justified in the weak coupling limit. Using the solution to the master equation, we study the transverse momentum broadening of a jet as a function of the plasma temperature and the time of propagation. We discuss the physical origin of infrared sensitivity that arises in the solution and a way to handle it in the effective field theory formulation. We suspect that the final measurement constraint can only cut-off leading infrared singularities and the solution to the Markovian master equation resums a logarithmic series. This work is a stepping stone towards understanding jet quenching and jet substructure observables on both light and heavy quark jets as probes of the quark-gluon plasma.





2011 ◽  
Vol 26 (03n04) ◽  
pp. 586-588 ◽  
Author(s):  
VADIM BARU

With the advent of chiral perturbation theory, the low-energy effective field theory of QCD, high accuracy calculations for hadronic reactions have become possible. We review the recent developments in the reaction NN → NNπ in chiral EFT.



2016 ◽  
Vol 2016 (03) ◽  
pp. 057-057 ◽  
Author(s):  
Zvonimir Vlah ◽  
Uroš Seljak ◽  
Man Yat Chu ◽  
Yu Feng


2014 ◽  
Vol 35 ◽  
pp. 1460431
Author(s):  
THOMAS MEHEN

This talk summarizes recent developments in quarkonium spectroscopy. I comment on the relation between the Zb(10610) and Zb(10650) and recently observed Zc(3900) and Zc(4025) states. Then I discuss a number of calculations using non-relativistic effective field theory for the X(3872), Zb(10610), and Zb(10650), under the assumption that these are shallow molecular bound states of charm or bottom mesons.



Author(s):  
Tobias Baldauf

The lectures featured in this chapter review the observables relevant to the large-scale structure (LSS) of our Universe. The chapter introduces an effective field theory (EFT) that allows us to analytically describe the growth of fluctuations into the non-linear era, with uncertainties better controlled than in classical linear perturbation theory. Topics covered in the chapter include random fields in three-dimensional space, Fourier space conventions, the shape of the matter power spectrum, Gaussian random fields, estimators and cosmic variance, dynamics in the Newtonian regime, a perturbative solution of the fluid equations, the EFT approach, the Lagrangian perturbation theory, biased tracers, and redshift space distortions.



2003 ◽  
Vol 17 (28) ◽  
pp. 5111-5126 ◽  
Author(s):  
R. J. FURNSTAHL

The study of quantum chromodynamics (QCD) over the past quarter century has had relatively little impact on the traditional approach to the low-energy nuclear many-body problem. Recent developments are changing this situation. New experimental capabilities and theoretical approaches are opening windows into the richness of many-body phenomena in QCD. A common theme is the use of effective field theory (EFT) methods, which exploit the separation of scales in physical systems. At low energies, effective field theory can explain how existing phenomenology emerges from QCD and how to refine it systematically. More generally, the application of EFT methods to many-body problems promises insight into the analytic structure of observables, the identification of new expansion parameters, and a consistent organisation of many-body corrections, with reliable error estimates.



1995 ◽  
Vol 51 (12) ◽  
pp. 6990-7006 ◽  
Author(s):  
Eric Braaten ◽  
Agustin Nieto


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1262
Author(s):  
Nils Hermansson-Truedsson

Chiral perturbation theory is a much successful effective field theory of quantum chromodynamics at low energies. The effective Lagrangian is constructed systematically order by order in powers of the momentum p2, and until now the leading order (LO), next-to leading order (NLO), next-to-next-to leading order (NNLO) and next-to-next-to-next-to leading order (NNNLO) have been studied. In the following review we consider the construction of the Lagrangian and in particular focus on the NNNLO case. We in addition review and discuss the pion mass and decay constant at the same order, which are fundamental quantities to study for chiral perturbation theory. Due to the large number of terms in the Lagrangian and hence low energy constants arising at NNNLO, some remarks are made about the predictivity of this effective field theory.



2002 ◽  
Vol 699 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
U. van Kolck


Sign in / Sign up

Export Citation Format

Share Document