narrow temperature interval
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 13 (6) ◽  
Author(s):  
Tabea J. Koch ◽  
Patrick Schmidt

AbstractBirch tar is the oldest manmade adhesive dating back to the European Middle Palaeolithic. Its study is of importance for understanding the cognitive capacities and technical skills of Neanderthals and the aceramic production systems employed in the European Palaeolithic and Mesolithic. Several methods may have been used to make birch tar, the most common proposition being dry distillation in oxygen-depleted atmospheres. One of the major impediments for our understanding of the conditions employed to make Neanderthal birch tar, and ultimately the technique used, is that it remains unknown at which temperatures exactly birch tar forms. The relationship between heating duration and tar formation is also unknown. To address these questions, we conduct a laboratory heating experiment, using sealed glass tubes and an electric furnace. We found that birch tar is only produced at a narrow temperature interval (350 °C and 400 °C). Heating times longer than 15 min have no effect on the quantity of tar produced. These findings, notwithstanding previous propositions of necessarily long heating times and larger tolerances for temperature, have important implications for our understanding of the investment in time needed for Palaeolithic birch tar making.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
David Blaschke ◽  
Kirill A. Devyatyarov ◽  
Olaf Kaczmarek

In this work, we present a unified approach to the thermodynamics of hadron–quark–gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.


Author(s):  
David Blaschke ◽  
Kirill Devyatyarov ◽  
Olaf Kaczmarek

We present a unified approach to the thermodynamics of hadron-quark-gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth-Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark-gluon plasma takes place in the narrow temperature interval of 150−185 MeV where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark-gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.


Author(s):  
A. V. Protasov

Modern ladle treatment of liquid steel represents a wide set of technological processes and aggregates, as well as units and systems, many of them having significant cost and need expensive maintenance. Technical and economic advantages, obtained at various variants of steel ladle treatment considered, the advantages being at both metal products producers and consumers. Factors of production expenses saving at the stage of steel smelting due to transferring of the steel refining operation from melting aggregates to the stage of ladle treatment considered. It was noted, that in the process of continuous casting of metal, subjected to ladle refining, the steel casting improves considerably due to keeping the narrow temperature interval, decreased content and globular form of nonmetallic inclusions. In its turn it results in a decrease of rejects, an increase of billet drawing speed possibility and correspondent increase of production capacity, reduction of the number of the casted billet shell breaks. Technical and economic advantages of melt treatment by cored wire or by all-metal injection wire with stuff shown. Decrease of rejects is an important factor for cost decreasing. For example, application of calcium-aluminum cored wire at a steel-works enabled to decrease the rejects of well-casings made of 20ГЮ steel by a factor of 1.5–2. In many cases production of state-of-the-art steel grades, for example IF-steels, being the base of the modern motor-car construction, is not possible without ladle treatment. Therefore, absence of ladle treatment elements at a big steelworks can lead to considerable losses.


2019 ◽  
Vol 61 (10) ◽  
pp. 1831
Author(s):  
В.А. Марихин ◽  
С.А. Гурьева ◽  
Л.П. Мясникова ◽  
Б.З. Волчек ◽  
Д.А. Медведева

The kinetics of the structural first order phase transition in the tetracosane С24Н50 monodisperse samples is studied with the help of FTIR spectroscopy. The temperature dependencies of the frequency and intensity of rocking (ν~ 720 cm-1) and bending (ν~ 1470 cm-1) vibrations of СН2-groupes in the methylene trans-sequences in the crystalline cores of the elementary lamellae are investigated. It is shown that the first order solid phase transition is developing on a heterogeneous mechanism in the narrow temperature interval (T~ 2 K) according to the theory of the diffused first order phase transitions and is due to the crystalline cell symmetry change.


2013 ◽  
Vol 46 (4) ◽  
pp. 903-907 ◽  
Author(s):  
A. V. Zozulya ◽  
J.-M. Meijer ◽  
A. Shabalin ◽  
A. Ricci ◽  
F. Westermeier ◽  
...  

The structural evolution of colloidal crystals made of polystyrene hard spheres has been studiedin situupon incremental heating of a crystal in a temperature range below and above the glass transition temperature of polystyrene. Thin films of colloidal crystals having different particle sizes were studied in transmission geometry using a high-resolution small-angle X-ray scattering setup at the P10 Coherence Beamline of the PETRA III synchrotron facility. The transformation of colloidal crystals to a melted state has been observed in a narrow temperature interval of less than 10 K.


1987 ◽  
Vol 2 (1) ◽  
pp. 107-116 ◽  
Author(s):  
H. G. Bohn ◽  
J. M. Williams ◽  
C. J. McHargue ◽  
G. M. Begun

The annealing behavior of ion-implanted α-SiC single crystal was determined for samples implanted with 62 keV 14N to doses of 5.5X1014/cm2 and 8.0X1016/cm2 and with 260 keV 52Cr to doses of 1.5X1014/cm2 and 1.0X1016/cm2. The high-dose samples formed amorphous surface layers to depths of 0.17 μm (N) and 0.28 μm (Cr), while for the low doses only highly damaged but not randomized regions were formed. The samples were isochronically annealed up to 1600°C, holding each temperature for 10 min. The remaining damage was analyzed by Rutherford backscattering of 2 MeV He+, Raman scattering, and electron channeling. About 15% of the width of the amorphous layers regrew cpitaxially from the underlying undamaged material up to 1500°C, above which the damage annealed rapidly in a narrow temperature interval. The damage in the crystalline samples annealed linearly with temperature and was unmeasurable above 1000°C.


Nature ◽  
1978 ◽  
Vol 273 (5659) ◽  
pp. 242-243 ◽  
Author(s):  
PETER MASON ◽  
HELEN HASAN ◽  
MILENA VALIS

Sign in / Sign up

Export Citation Format

Share Document