scholarly journals A transportable quantum gravimeter employing delta-kick collimated Bose–Einstein condensates

2020 ◽  
Vol 74 (8) ◽  
Author(s):  
Nina Heine ◽  
Jonas Matthias ◽  
Maral Sahelgozin ◽  
Waldemar Herr ◽  
Sven Abend ◽  
...  

Abstract Gravimetry with low uncertainty and long-term stability opens up new fields of research in geodesy, especially in hydrology and volcanology. The main limitations in the accuracy of current generation cold atom gravimeters stem from the expansion rate and the residual centre-of-mass motion of their atomic test masses. Our transportable quantum gravimeter QG-1 aims at overcoming these limitations by performing atom interferometry with delta-kick collimated Bose–Einstein condensates generated by an atom chip. With our approach we anticipate to measure the local gravitational acceleration at geodetic campaigns with an uncertainty less than 1 nm/s2 surpassing the state-of-the-art classic and quantum based systems. In this paper, we discuss the design and performance assessment of QG-1. Graphical abstract

Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
Ignacio Lázaro Roche

Tomography based on cosmic muon absorption is a rising technique because of its versatility and its consolidation as a geophysics tool over the past decade. It allows us to address major societal issues such as long-term stability of natural and man-made large infrastructures or sustainable underwater management. Traditionally, muon trackers consist of hodoscopes or multilayer detectors. For applications with challenging available volumes or the wide field of view required, a thin time projection chamber (TPC) associated with a Micromegas readout plane can provide a good tradeoff between compactness and performance. This paper details the design of such a TPC aiming at maximizing primary signal and minimizing track reconstruction artifacts. The results of the measurements performed during a case study addressing the aforementioned applications are discussed. The current works lines and perspectives of the project are also presented.


2021 ◽  
Author(s):  
Franck Pereira Dos Santos ◽  
Pierre Vermeulen ◽  
Sylvain Bonvalot ◽  
Germinal Gabalda ◽  
Nicolas Le Moigne ◽  
...  

<p>Since a few years, several laboratories, institutes or organizations through the world have acquired marketed quantum absolute gravimeters AQG developed by Muquans. Among their potentialities, these new generations of instruments are expected to complement the existing capabilities of long term monitoring of the Earth gravity field. A metrological evaluation of their performances for long-term measurements is thus a first step.</p><p>The LNE-SYRTE gravimetry laboratory in the suburb of Paris, has been designed to accommodate other gravimeters for metrological comparisons, tests and calibrations. Instruments of different classes operate in this well characterized laboratory: a laboratory-based absolute cold atom gravimeter (CAG) and a relative superconducting gravimeter iGrav. Both instruments allow for continuous measurements, Accuracy is guaranteed by the CAG and long-term stability by the iGrav.</p><p>We there have performed a more than one-year long measurement session with the initial version of the marketed quantum gravimeter AQG (AQG-A01).</p><p>An improved version of this AQG (AQG-B01) designed for outdoor measurement and recently acquired by RESIF (the French Seismologic and Geodetic Network) has been also implemented to close this session with a last month of simultaneous data recording involving all the instruments. Finally, we also performed supplementary accuracy tests, in particular to evaluate the Coriolis bias of the two AQG commercial sensors.</p><p>The talk will briefly present the different instruments to rapidly focus on the performances of the AQGs and results of the comparisons.</p>


2018 ◽  
Vol 16 (7) ◽  
pp. 070201 ◽  
Author(s):  
Yaning Wang Yaning Wang ◽  
Yanling Meng Yanling Meng ◽  
Jinyin Wan Jinyin Wan ◽  
Ling Xiao Ling Xiao ◽  
Mingyuan Yu Mingyuan Yu ◽  
...  

1984 ◽  
Vol 5 (1) ◽  
pp. 21-30 ◽  
Author(s):  
N. Lior ◽  
R. T. Brish ◽  
L. Tedori ◽  
S. Koffs

1999 ◽  
Vol 9 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Christopher Y. Choi ◽  
Werner Zimmt ◽  
Gene Giacomelli

Aqueous foam was developed to serve as a barrier to conductive, convective, and radiative heat transfer. Through the use of a bulking agent, the physical properties of gelatin-based foam were more stable, adhesive, biodegradable, and long lasting. The phytotoxicity, possible environmental hazard and removal of the foam were also considered. Resistance to freezing-thawing, heating-evaporation, and wind were evaluated. Studies to determine the foam's long-term stability under field weather conditions were completed. The handling and performance characteristics of the foam necessary for development of this application were determined. Factors that affect the physical properties and the utilization of the foam were quantified. These included the proportions of the foam components, the mixing temperature of the prefoam solution, the application temperature, and the rate of foam generation. The newly developed foam might be ideal for freeze and frost protection in agriculture.


2017 ◽  
Vol 107 (8) ◽  
pp. 2168-2203 ◽  
Author(s):  
Guido Friebel ◽  
Matthias Heinz ◽  
Miriam Krueger ◽  
Nikolay Zubanov

In a field experiment with a retail chain (1,300 employees, 193 shops), randomly selected sales teams received a bonus. The bonus increases both sales and number of customers dealt with by 3 percent. Each dollar spent on the bonus generates $3.80 in sales, and $2.10 in profit. Wages increase by 2.2 percent while inequality rises only moderately. The analysis suggests effort complementarities to be important, and the effectiveness of peer pressure in overcoming free-riding to be limited. After rolling out the bonus scheme, the performance of the treatment and control shops converges, suggesting long-term stability of the treatment effect. (JEL D22, J31, J33, L25, L81, M53, M54)


2020 ◽  
Author(s):  
Sébastien Merlet ◽  
Raphael Piccon ◽  
Sumit Sarkar ◽  
Franck Pereira Dos Santos

<p>Gravity measurements are performed with two different classes of instruments: gravimeters, most widely used, measure the gravity acceleration gand its variations, whereas gradiometers measure its gradient.</p><p>Quantum gravity sensors, based on cold atom interferometry techniques, can offer higher sensitivities and accuracies than current state of the art commercial available technologies. Their limits in performances, both in terms of accuracy and long term stability, are linked to the temperature of the atomic cloud, in the low µK range, and more specifically, to the residual ballistic expansion of the atomic sources in the laser beams. To overcome these limits, we use ultracold atoms in the nano-kelvin range in our sensors.</p><p>I will first present our Cold Atom Gravimeter (CAG) used for the determination of the Planck constant with the LNE Kibble Balance [1]. It performs continuously 3 gravity measurements per second with a demonstrated long term stability of 0.06 nano-gin 40 000 s of measurement. Using ultracold atoms produced by evaporative cooling in a crossed dipole trap as a source, its accuracy, which is still to be improved, is currently at the level of 2 nano-g. This makes our CAG, the more accurate gravimeter [2]. It detects water table level variations. Then I will describe a « dual sensor » which performs simultaneous measurements of g and its gradient. This offers in principle the possibility to resolve, by combining these two signals, the ambiguities in the determination of the positions and masses of the sources, offering new perspectives for applications. It uses cold atom sources for proof of principle demonstrations [3, 4] and will soon combine ultra-cold atomic samples produced by magnetic traps on a chip and large momentum beamsplitters. With these two key elements, the gradiometer will perform measurements in the sub-E sensitivity range in 1 s measurement time on the ground. Such a level of performances opens new prospects for on field and on board gravity mapping, for drift correction of inertial measurement units in navigation, for geophysics and for fundamental physics.</p><div> <strong>References</strong></div><p>[1] M. Thomas et al. Metrologia <strong>54</strong>, 468-480 (2017)</p><p>[2] R. Karcher, et al. New J. Phys. <strong>20</strong>, 113041 (2018)</p><p>[3] M. Langlois et al. Phys. Rev. A <strong>96</strong>, 053624 (2017)</p><p>[4] R. Caldani et al. Phys. Rev. A <strong>99</strong>, 033601 (2019)</p>


Sign in / Sign up

Export Citation Format

Share Document