magnetic traps
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pietro Tierno ◽  
Tom H. Johansen ◽  
Arthur V. Straube

AbstractThe stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet film. At each domain, the magnetic stray field generates an effective harmonic potential with a field tunable stiffness. The experiments are combined with theory to show that the magnetic confinement is effectively harmonic and pairwise interactions are of dipolar nature, leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the stationary collective states arise from the competition between repulsion, confinement and the tendency to fill the central potential well. Using a numerical simulation model as a quantitative map between the experiments and theory we explore the field-induced crystallization process for larger clusters and unveil the existence of three different dynamical regimes. The present method provides a model platform for investigations of the collective phenomena emerging when strongly confined nanoparticle clusters are forced to move in an idealized, harmonic-like potential.


2021 ◽  
Author(s):  
Pietro Tierno ◽  
Tom Johansen ◽  
Arthur Straube

Abstract The stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet film. At each domain, the magnetic stray field generates an effective harmonic potential with a field tunable stiffness. The experiments are combined with theory to show that the magnetic confinement is effectively harmonic and pairwise interactions are of dipolar nature, leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the stationary collective states arise from the competition between repulsion, confinement as the tendency to fill the central potential well. Using a numerical simulation model as a quantitative map between the experiment and theory we explore the field-induced crystallization process for larger clusters and unveil the existence of three different dynamical regimes. The present method provides a model platform for investigations of the collective phenomena emerging when strongly confined nanoparticle clusters are forced to move in an idealized, harmonic-like potential.


Author(s):  
Brianna R. Heazlewood

Since external magnetic fields were first employed to deflect paramagnetic atoms in 1921, a range of magnetic field–based methods have been introduced to state-selectively manipulate paramagnetic species. These methods include magnetic guides, which selectively filter paramagnetic species from all other components of a beam, and magnetic traps, where paramagnetic species can be spatially confined for extended periods of time. However, many of these techniques were developed for atomic—rather than molecular—paramagnetic species. It has proven challenging to apply some of these experimental methods developed for atoms to paramagnetic molecules. Thanks to the emergence of new experimental approaches and new combinations of existing techniques, the past decade has seen significant progress toward the manipulation and control of paramagnetic molecules. This review identifies the key methods that have been implemented for the state-selective manipulation of paramagnetic molecules—discussing the motivation, state of the art, and future prospects of the field. Key applications include the ability to control chemical interactions, undertake precise spectroscopic measurements, and challenge our understanding of chemical reactivity at a fundamental level. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
A. Steyerl ◽  
E. Gutsmiedl

2020 ◽  
Vol 101 (5) ◽  
Author(s):  
Ren Qin ◽  
Yong Wang

2020 ◽  
Author(s):  
Sébastien Merlet ◽  
Raphael Piccon ◽  
Sumit Sarkar ◽  
Franck Pereira Dos Santos

<p>Gravity measurements are performed with two different classes of instruments: gravimeters, most widely used, measure the gravity acceleration gand its variations, whereas gradiometers measure its gradient.</p><p>Quantum gravity sensors, based on cold atom interferometry techniques, can offer higher sensitivities and accuracies than current state of the art commercial available technologies. Their limits in performances, both in terms of accuracy and long term stability, are linked to the temperature of the atomic cloud, in the low µK range, and more specifically, to the residual ballistic expansion of the atomic sources in the laser beams. To overcome these limits, we use ultracold atoms in the nano-kelvin range in our sensors.</p><p>I will first present our Cold Atom Gravimeter (CAG) used for the determination of the Planck constant with the LNE Kibble Balance [1]. It performs continuously 3 gravity measurements per second with a demonstrated long term stability of 0.06 nano-gin 40 000 s of measurement. Using ultracold atoms produced by evaporative cooling in a crossed dipole trap as a source, its accuracy, which is still to be improved, is currently at the level of 2 nano-g. This makes our CAG, the more accurate gravimeter [2]. It detects water table level variations. Then I will describe a « dual sensor » which performs simultaneous measurements of g and its gradient. This offers in principle the possibility to resolve, by combining these two signals, the ambiguities in the determination of the positions and masses of the sources, offering new perspectives for applications. It uses cold atom sources for proof of principle demonstrations [3, 4] and will soon combine ultra-cold atomic samples produced by magnetic traps on a chip and large momentum beamsplitters. With these two key elements, the gradiometer will perform measurements in the sub-E sensitivity range in 1 s measurement time on the ground. Such a level of performances opens new prospects for on field and on board gravity mapping, for drift correction of inertial measurement units in navigation, for geophysics and for fundamental physics.</p><div> <strong>References</strong></div><p>[1] M. Thomas et al. Metrologia <strong>54</strong>, 468-480 (2017)</p><p>[2] R. Karcher, et al. New J. Phys. <strong>20</strong>, 113041 (2018)</p><p>[3] M. Langlois et al. Phys. Rev. A <strong>96</strong>, 053624 (2017)</p><p>[4] R. Caldani et al. Phys. Rev. A <strong>99</strong>, 033601 (2019)</p>


Sign in / Sign up

Export Citation Format

Share Document