Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations

2021 ◽  
Vol 136 (3) ◽  
Author(s):  
Hadi Jahanshahi ◽  
Diyi Chen ◽  
Yu-Ming Chu ◽  
J. F. Gómez-Aguilar ◽  
Ayman A. Aly
Author(s):  
H. T. Zhu ◽  
Y.G. Xu ◽  
Yang Yu ◽  
Lixin Xu

Abstract A path integration procedure based on Gauss-Legendre integration scheme is developed to analyze probabilistic solution of nonlinear vibration energy harvesters (VEH) in this paper. First, traditional energy harvesters are briefly introduced and their non-dimensional governing and moment equations are given. These moment equations could be solved through the Runge-Kutta and Gaussian closure method. Then, the path integration method is expanded to three-dimensional situation, solving the probability density function (PDF) of VEH. Three illustrative examples are considered to evaluate the effectiveness of this method. The effectiveness of nonlinearity of traditional monostable VEH and a bistable VEH are further studied too. At the same time, Equivalent linearization method(EQL) and Monte Carlo simulation are employed too. The results indicate that three-dimensional path integration method can give satisfactory results for the global PDF, especially for the tail PDF, and they have better agreement with the simulation results than those of the EQL. In addition, the different degrees of hardening and softening behaviors of the PDFs occur when the nonlinearity coefficient increases and the bistable type is considered.


Author(s):  
Sumin Seong ◽  
Soobum Lee

Vibration energy harvesting (EH) has been initiated from linear vibration principle, which utilizes a single frequency to obtain power. Unfortunately, linear energy harvesters do not yield appreciable power because of random nature of vibration in the real world. In order to overcome the weakness of linear harvesters and account for the arbitrary nature of vibration, multiple nonlinear vibration energy harvesters have been developed and studied. This paper presents parametric study on the design of nonlinear vibration EH device that utilizes snap-through mechanism to obtain high power from broadband excitation frequency. The device is comprised of a cantilever beam with curved shell implemented in the middle of the beam. When vibrating, the curved shell causes snap-through buckling and the nature of vibration becomes nonlinear. For practical purposes, a broadband frequency vibration input is used to optimize the energy harvester design. Design variables are assigned and optimized in order to create optimal design of the energy harvester, which maximizes power output. The presented design will have positive effect by providing means to practically capturing wasted vibration energy in consideration of its broadband frequency utilization.


2013 ◽  
Vol 14 (4) ◽  
pp. 283-287 ◽  
Author(s):  
Pei-hong Wang ◽  
Kai Tao ◽  
Zhuo-qing Yang ◽  
Gui-fu Ding

2017 ◽  
Vol 27 (10) ◽  
pp. 104003 ◽  
Author(s):  
Shao-Tuan Chen ◽  
Sijun Du ◽  
Emmanuelle Arroyo ◽  
Yu Jia ◽  
Ashwin Seshia

Sign in / Sign up

Export Citation Format

Share Document