Characterization of Porous Materials by Densities, Adsorption Techniques and Mercury Porosimetry

2020 ◽  
pp. 1-70
Author(s):  
Marjo C. Mittelmeijer-Hazeleger
2011 ◽  
Vol 84 (1) ◽  
pp. 107-136 ◽  
Author(s):  
Jean Rouquerol ◽  
Gino Baron ◽  
Renaud Denoyel ◽  
Herbert Giesche ◽  
Johan Groen ◽  
...  

This document deals with the characterization of porous materials having pore widths in the macropore range of 50 nm to 500 μm. In recent years, the development of advanced adsorbents and catalysts (e.g., monoliths having hierarchical pore networks) has brought about a renewed interest in macropore structures. Mercury intrusion–extrusion porosimetry is a well-established method, which is at present the most widely used for determining the macropore size distribution. However, because of the reservations raised by the use of mercury, it is now evident that the principles involved in the application of mercury porosimetry require reappraisal and that alternative methods are worth being listed and evaluated. The reliability of mercury porosimetry is discussed in the first part of the report along with the conditions required for its safe use. Other procedures for macropore size analysis, which are critically examined, include the intrusion of other non-wetting liquids and certain wetting liquids, capillary condensation, liquid permeation, imaging, and image analysis. The statistical reconstruction of porous materials and the use of macroporous reference materials (RMs) are also examined. Finally, the future of macropore analysis is discussed.


Author(s):  
Marcos de Oliveira Jr. ◽  
Kevin Herr ◽  
Martin Brodrecht ◽  
Nadia Berenice Haro-Mares ◽  
Till Wissel ◽  
...  

High-field Dynamic Nuclear Polarization is a powerful tool for the structural characterization of species on the surface of porous materials or nanoparticles. For these studies the main source of polarization...


Pramana ◽  
2004 ◽  
Vol 63 (1) ◽  
pp. 165-173 ◽  
Author(s):  
S. Mazumder ◽  
D. Sen ◽  
A. K. Patra

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Gretchen S. Selders ◽  
Allison E. Fetz ◽  
Shannon L. Speer ◽  
Gary L. Bowlin

AbstractElectrospinning, a fabrication technique used to create non-woven, porous templates from natural and synthetic polymers, is commonly used in tissue engineering because it is highly tailorable. However, traditional electrospinning creates restrictive pore sizes that limit the required cell migration. Therefore, tissue engineering groups have sought to enhance and regulate porosity of tissue engineering templates. Air-impedance electrospinning generates templates with tailorable, patterned areas of low and high density fiber deposition. Here we demonstrate an improved air-impedance electrospinning system, consisting of a newly designed funnel equipped to hold changeable porous deposition plates and administer air flow in a confined and focused manner, with parameters that maintain template integrity. In this preliminary study, we quantify the increase in porosity of polydioxanone templates with use of traditional fiber and pore analysis as well as with mercury porosimetry. Additionally, we validate the system’s significance in fabricating enhanced porosity templates that maintain their mechanical properties (i.e. elastic modulus, tensile strength, and suture retention strength) despite the deliberate increase in porosity. This is of exceptional value to the template’s integrity and efficacy as these parameters can be further optimized to induce the desired template porosity, strength, and texture for a given application.


Sign in / Sign up

Export Citation Format

Share Document