Polynomial invariants

2021 ◽  
pp. 77-113
2017 ◽  
Vol 26 (12) ◽  
pp. 1750081
Author(s):  
Sang Youl Lee

In this paper, we introduce a notion of virtual marked graphs and their equivalence and then define polynomial invariants for virtual marked graphs using invariants for virtual links. We also formulate a way how to define the ideal coset invariants for virtual surface-links using the polynomial invariants for virtual marked graphs. Examining this theory with the Kauffman bracket polynomial, we establish a natural extension of the Kauffman bracket polynomial to virtual marked graphs and found the ideal coset invariant for virtual surface-links using the extended Kauffman bracket polynomial.


1991 ◽  
Vol 109 (1) ◽  
pp. 83-103 ◽  
Author(s):  
H. R. Morton ◽  
P. Strickland

AbstractResults of Kirillov and Reshetikhin on constructing invariants of framed links from the quantum group SU(2)q are adapted to give a simple formula relating the invariants for a satellite link to those of the companion and pattern links used in its construction. The special case of parallel links is treated first. It is shown as a consequence that any SU(2)q-invariant of a link L is a linear combination of Jones polynomials of parallels of L, where the combination is determined explicitly from the representation ring of SU(2). As a simple illustration Yamada's relation between the Jones polynomial of the 2-parallel of L and an evaluation of Kauffman's polynomial for sublinks of L is deduced.


10.4171/qt/35 ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Ross Askanazi ◽  
Sergei Chmutov ◽  
Charles Estill ◽  
Jonathan Michel ◽  
Patrick Stollenwerk

1994 ◽  
Vol 34 (2) ◽  
pp. 97-110 ◽  
Author(s):  
J. P. Boehler ◽  
A. A. Kirillov ◽  
E. T. Onat

2018 ◽  
Vol 63 (6) ◽  
pp. 488
Author(s):  
A. M. Pavlyuk

We introduce the generalized equidistant Chebyshev polynomials T(k,h) of kind k of hyperkind h, where k, h are positive integers. They are obtained by a generalization of standard and monic Chebyshev polynomials of the first and second kinds. This generalization is fulfilled in two directions. The horizontal generalization is made by introducing hyperkind ℎ and expanding it to infinity. The vertical generalization proposes expanding kind k to infinity with the help of the method of equidistant coefficients. Some connections of these polynomials with the Alexander knot and link polynomial invariants are investigated.


2021 ◽  
Author(s):  
◽  
Deborah Crook

<p>In this work, we examine the polynomial invariants of the special Euclidean group in three dimensions, SE(3), in its action on multiple screw systems. We look at the problem of finding generating sets for these invariant subalgebras, and also briefly describe the invariants for the standard actions on R^n of both SE(3) and SO(3). The problem of the screw system action is then approached using SAGBI basis techniques, which are used to find invariants for the translational subaction of SE(3), including a full basis in the one and two-screw cases. These are then compared to the known invariants of the rotational subaction. In the one and two-screw cases, we successfully derive a full basis for the SE(3) invariants, while in the three-screw case, we suggest some possible lines of approach.</p>


2006 ◽  
Vol 15 (10) ◽  
pp. 1279-1301
Author(s):  
N. AIZAWA ◽  
M. HARADA ◽  
M. KAWAGUCHI ◽  
E. OTSUKI

All polynomial invariants of links for two dimensional solutions of Yang–Baxter equation is constructed by employing Turaev's method. As a consequence, it is proved that the best invariant so constructed is the Jones polynomial and there exist three solutions connecting to the Alexander polynomial. Invariants for higher dimensional solutions, obtained by the so-called dressings, are also investigated. It is observed that the dressings do not improve link invariant unless some restrictions are put on dressed solutions.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


Sign in / Sign up

Export Citation Format

Share Document