ROGUE WAVES IN DEEP WATER

2003 ◽  
Author(s):  
C.M. SCHOBER
Keyword(s):  
2021 ◽  
Vol 108 ◽  
pp. 102402
Author(s):  
S. Mendes ◽  
A. Scotti ◽  
P. Stansell

Author(s):  
Джордж Парарас-Караяннис

Пересмотренные официальные записи Следственного суда ВМС США содержат выводы о том, что разрушение бронированного крейсера USS Memphis 29 августа 1916 года на якоре у гавани Санто-Доминго (Сьюдад-Трухильо) Доминиканской Республики, остров Эспаньола, вероятно, было вызвано «тропическим волнением» «сейсмической бурей» или «цунами». Тем не менее, современный анализ этой морской катастрофы свидетельствует о том, что гибель корабля произошла не по какой-либо из этих причин, а из-за волн-убийц метеоцунами, вызванных быстрым, значительным и прогрессирующим падением атмосферного давления, которое началось в районе около 22 августа и было связано с проходящим ураганом, который в его самой близкой точке был около 250 морских миль на юг. Кроме того, штормовые волны от этого урагана двигались в направлении Санто-Доминго, преломляясь в резонансе у берега, и усиливались и трансформировались низким барометрическим давлением, мелким континентальным шельфом и местными особенностями побережья и батиметрией залива. Настоящий анализ основан на тщательном изучении судового журнала и наблюдений за событиями со стороны экипажа и людей на берегу. Учитывая ограниченные метеорологические данные того периода времени, в настоящем анализе использовался эмпирический подход для грубой оценки функции распределения Рэлея, верхнего предела изменчивости высоты штормовой волны вдали от наиболее интенсивных потоков ветра, а также максимального периода, длины волны и амплитуды генерируемых штормовых волн в глубине . Основываясь на теориях кноидальных волн и волн Эйри, период и скорость наиболее значительных экстремальных внутренних волн имели метеорологическое происхождение, которое было преобразовано в мелкой воде в результате резонансного и наложенного прихода двух других волн, которые создали трехступенчатое плато, на переднем фронте огромная одиночная волна-убийца метеоцунами высотой около 70 футов, с тремя четкими ступенями, двумя плато на передней поверхности и предшествующей впадиной длиной около 300 футов. Основываясь на этом анализе, настоящее исследование пришло к выводу, что именно эта значительная волна метеоцунами / волна-убийца в сочетании с одновременно прибывающими штормовыми волнами охватила Мемфис USS в 16 ч. 40 м. 29 августа 1916 года, разорвав цепи якорей и разрушая его на скалах Санто-Доминго. Official revised records of a U.S. Navy Court of Inquiry concluded that the 29 August 1916 destruction of the armored cruiser USS Memphis anchored off Santo Domingo (Ciudad Trujillo) harbor of the Dominican Republic, Island of Hispaniola, was probably caused by a “tropical disturbance”, a “seismic storm”, or a “tsunami”. However, the present analysis of this naval disaster documents that the loss of the ship was not due to any of these causes, but to rogue waves of a meteotsunami generated from a rapid, significant and progressive drop in atmospheric pressure which begun in the area around August 22 and was associated with a passing hurricane which at its closest point was about 250 nautical miles to the south. Also, storm waves from this hurricane moved towards Santo Domingo refracting in resonance near shore and were further amplified and transformed by the low barometric pressure, the shallow continental shelf and the local coastal features and bathymetry of the bay. The present analysis is based on careful examination of the ship’s log, and on observations of events by the crew and people on the shore. Given the limited meteorological data of that time period, the present analysis used an empirical approach to roughly evaluate the Rayleigh distribution function, the upper limit of storm wave height variability away from the most intense wind fetches, as well as the maximum period, wavelength and deep-water heights of generated storm waves. Based on Airy and cnoidal wave theories, the deep water period and celerity of the most significant extreme wave was of meteorological origin which was transformed in shallower water by the resonant and superimposed arrival of two other waves which created a three step plateau on the face of a huge single rogue wave of the meteotsunami, estimated to be about 70 feet in height, with three distinct steps, two plateaus on its forward face, and a preceding trough estimated to be 300 ft. long. Based on this analysis, the present study concluded that it was this significant meteotsunami/rogue wave, in combination with concurrently arriving storm swells, that engulfed the USS Memphis at 1640 hour in the afternoon of 29 August 1916 - breaking the chains of its anchors and wrecking it on the rocks of Santo Domingo.


2000 ◽  
Vol 275 (5-6) ◽  
pp. 386-393 ◽  
Author(s):  
Alfred R Osborne ◽  
Miguel Onorato ◽  
Marina Serio

2018 ◽  
Author(s):  
Kwok Wing Chow ◽  
Hiu Ning Chan ◽  
Roger H. J. Grimshaw

Abstract. The occurrence of unexpectedly large displacements in the interior of the oceans is studied through the dynamics of packets of internal waves, where the evolution is governed by the nonlinear Schrödinger equation. The case of constant buoyancy frequency permits analytical treatment. While modulation instability for surface waves only arises for sufficiently deep water, rogue internal waves may occur if the fluid depth is shallow. The dependence on the stratification parameter and choice of internal modes can be demonstrated explicitly. The spontaneous generation of rogue waves is tested by numerical simulations.


2015 ◽  
Vol 782 ◽  
pp. 25-36 ◽  
Author(s):  
Francesco Fedele

In this paper, we revisit Janssen’s (J. Phys. Oceanogr., vol. 33 (4), 2003, pp. 863–884) formulation for the dynamic excess kurtosis of weakly nonlinear gravity waves in deep water. For narrowband directional spectra, the formulation is given by a sixfold integral that depends upon the Benjamin–Feir index and the parameter $R={\it\sigma}_{{\it\theta}}^{2}/2{\it\nu}^{2}$, a measure of short-crestedness for the dominant waves, with ${\it\nu}$ and ${\it\sigma}_{{\it\theta}}$ denoting spectral bandwidth and angular spreading. Our refinement leads to a new analytical solution for the dynamic kurtosis of narrowband directional waves described with a Gaussian-type spectrum. For multidirectional or short-crested seas initially homogeneous and Gaussian, in a focusing (defocusing) regime dynamic kurtosis grows initially, attaining a positive maximum (negative minimum) at the intrinsic time scale ${\it\tau}_{c}={\it\nu}^{2}{\it\omega}_{0}t_{c}=1/\sqrt{3R}$, or $t_{c}/T_{0}\approx 0.13/{\it\nu}{\it\sigma}_{{\it\theta}}$, where ${\it\omega}_{0}=2{\rm\pi}/T_{0}$ denotes the dominant angular frequency. Eventually the dynamic excess kurtosis tends monotonically to zero as the wave field reaches a quasi-equilibrium state characterized by nonlinearities mainly due to bound harmonics. Quasi-resonant interactions are dominant only in unidirectional or long-crested seas where the longer-time dynamic kurtosis can be larger than that induced by bound harmonics, especially as the Benjamin–Feir index increases. Finally, we discuss the implication of these results for the prediction of rogue waves.


Author(s):  
Caio Eadi Stringari ◽  
Jean-François Filipot ◽  
Fabien Leckler ◽  
Rui Duarte

Wave breaking is one of the most important yet poorly understood water wave phenomena. It is via wave breaking that waves dissipate most of their energy and the occurrence of wave breaking directly influences several environmental processes, from ocean-atmosphere gas exchanges to beach morphodynamics. Large breaking waves also represent a major threat for navigation and for the survivability of offshore structures. This paper provides a systematic search for intermediate to deep water breaking waves with particular focus on the elusive occurrence of plunging breakers. Using modern remote sensing and deep learning techniques, we identify and track the evolution of over four thousand unique wave breaking events using video data collected from La Jument lighthouse during ten North Atlantic winter storms. Out of all identified breaking waves (Nb=4683), ≈22% were dominant breaking waves, that is, waves that have speeds within [0.77cp, 1.43cp], where cp is the peak wave speed. Correlations between the occurrence rate of dominant breaking waves (that is, waves per area and time per peak wave period) and wave steepness and wave age were observed. As expected, the number of identified plunging waves was small and six waves of all detected breaking waves, or 0.13%, could undoubtedly be considered as plunging waves. Two waves were also identified as unusually large, or rogue waves. Although afflicted by several technical issues, the data presented here provides a good indication that the probability of occurrence of plunging waves should be better incorporated into the design of offshore structures, particularly the ones that aim to harvest energy in offshore environments.


Sign in / Sign up

Export Citation Format

Share Document