scholarly journals CURRENT STATUS OF QUARK GLUON PLASMA SIGNALS

Author(s):  
L. GERLAND ◽  
S. SCHERER ◽  
D. ZSCHIESCHE ◽  
M. BLEICHER ◽  
J. BRACHMANN ◽  
...  
1992 ◽  
Vol 07 (29) ◽  
pp. 7185-7237 ◽  
Author(s):  
C.P. SINGH

Heavy ion experiments at the AGS machine of Brookhaven National Laboratory and SPS of CERN are aimed at producing and diagnosing a new state of matter, the quark-gluon plasma. Some important and relevant issues involving the nature and the detection aspects of the phase transition from hadron to quark matter are reviewed in an introductory and pedagogical way.


2001 ◽  
Vol 14 (1-4) ◽  
pp. 425-438 ◽  
Author(s):  
D. Zschiesche ◽  
S. Bass ◽  
M. Bleicher

Author(s):  
S. SCHERER ◽  
D. ZSCHIESCHE ◽  
M. BLEICHER ◽  
J. BRACHMANN ◽  
L. GERLAND ◽  
...  

2020 ◽  
Vol 35 (20) ◽  
pp. 2030010
Author(s):  
Maria Paola Lombardo ◽  
Anton Trunin

QCD axions are at the crossroads of QCD topology and Dark Matter searches. We present here the current status of topological studies on the lattice, and their implication on axion physics. We outline the specific challenges posed by lattice topology, the different proposals for handling them, the observable effects of topology on the QCD spectrum and its interrelation with chiral and axial symmetries. We review the transition to the quark–gluon plasma, the fate of topology at the transition, and the approach to the high temperature limit. We discuss the extrapolations needed to reach the regime of cosmological relevance, and the resulting constraints on the QCD axion.


2020 ◽  
Vol 70 (1) ◽  
pp. 395-423 ◽  
Author(s):  
Francesco Becattini ◽  
Michael A. Lisa

The quark–gluon plasma (QGP) produced by collisions between ultrarelativistic heavy nuclei is well described in the language of hydrodynamics. Noncentral collisions are characterized by very large angular momentum, which in a fluid system manifests as flow vorticity. This rotational structure can lead to a spin polarization of the hadrons that eventually emerge from the plasma, and thus these collisions provide experimental access to flow substructure at unprecedented detail. Recently, the first observations of Λ hyperon polarization along the direction of collisional angular momentum were reported. These measurements are in broad agreement with hydrodynamic and transport-based calculations and reveal that the QGP is the most vortical fluid ever observed. However, there remain important tensions between theory and observation that might be fundamental in nature. In the relatively mature field of heavy-ion physics, the discovery of global hyperon polarization and 3D simulations of the collision have opened an entirely new direction of research. We discuss the current status of this rapidly developing area and directions for future research.


2001 ◽  
Vol 16 (08) ◽  
pp. 531-540 ◽  
Author(s):  
K. OKANO

Within the closed-time-path formalism of nonequilibrium QCD, we derive a Slavnov–Taylor (ST) identity for the gluon polarization tensor. The ST identity takes the same form in both Coulomb and covariant gauges. Application to quasi-uniform quark–gluon plasma (QGP) near equilibrium or nonequilibrium quasistationary QGP is made.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
David Blaschke ◽  
Kirill A. Devyatyarov ◽  
Olaf Kaczmarek

In this work, we present a unified approach to the thermodynamics of hadron–quark–gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Nu Xu ◽  
Kenji Fukushima ◽  
Bedangadas Mohanty

AbstractWe make a theoretical and experimental summary of the state-of-the-art status of hot and dense QCD matter studies on selected topics. We review the Beam Energy Scan program for the QCD phase diagram and present the current status of the search for the QCD critical point, particle production in high baryon density region, hypernuclei production, and global polarization effects in nucleus-nucleus collisions. The available experimental data in the strangeness sector suggests that a grand canonical approach in the thermal model at high collision energy makes a transition to the canonical ensemble behavior at low energy. We further discuss future prospects of nuclear collisions to probe properties of baryon-rich matter. Creation of a quark-gluon plasma at high temperature and low baryon density has been called the “Little-Bang” and, analogously, a femtometer-scale explosion of baryon-rich matter at lower collision energy could be called the “femto-nova”, which could possibly sustain substantial vorticity and a magnetic field for non-head-on collisions.


Sign in / Sign up

Export Citation Format

Share Document