Series, Soluble Groups and Nilpotent Groups

Finite Groups ◽  
1999 ◽  
pp. 7-24
1992 ◽  
Vol 35 (2) ◽  
pp. 201-212
Author(s):  
J. C. Beidleman ◽  
M. J. Tomkinson

The authors together with M. J. Karbe [Ill. J. Math. 33 (1989) 333–359] have considered Fitting classes of -groups and, under some rather strong restrictions, obtained an existence and conjugacy theorem for -injectors. Results of Menegazzo and Newell show that these restrictions are, in fact, necessary.The Fitting class is normal if, for each is the unique -injector of G. is abelian normal if, for each. For finite soluble groups these two concepts coincide but the class of Černikov-by-nilpotent -groups is an example of a nonabelian normal Fitting class of -groups. In all known examples in which -injectors exist is closely associated with some normal Fitting class (the Černikov-by-nilpotent groups arise from studying the locally nilpotent injectors).Here we investigate normal Fitting classes further, paying particular attention to the distinctions between abelian and nonabelian normal Fitting classes. Products and intersections with (abelian) normal Fitting classes lead to further examples of Fitting classes satisfying the conditions of the existence and conjugacy theorem.


2015 ◽  
Vol 27 (3) ◽  
Author(s):  
Adolfo Ballester-Bolinches ◽  
Jean-Éric Pin ◽  
Xaro Soler-Escrivà

AbstractIn a previous paper, the authors have shown that Eilenberg's variety theorem can be extended to more general structures, called formations. In this paper, we give a general method to describe the languages corresponding to saturated formations of groups, which are widely studied in group theory. We recover in this way a number of known results about the languages corresponding to the classes of nilpotent groups, soluble groups and supersoluble groups. Our method also applies to new examples, like the class of groups having a Sylow tower.


2000 ◽  
Vol 62 (3) ◽  
pp. 427-433 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos ◽  
A. Martínez- Pastor

Dedicated to Professor K. Doerk on his 60th Birthday.In this paper the subnormal subgroup closed saturated formations of finite soluble groups containing nilpotent groups are fully characterised by means of extensions of well-known properties enjoyed by the formation of all nilpotent groups.


1971 ◽  
Vol 4 (1) ◽  
pp. 113-135 ◽  
Author(s):  
B. Hartley ◽  
D. McDougall

Let p be a prime and let Q be a centre-by-finite p′-group. It is shown that the ZQ-modules which satisfy the minimal condition on submodules and have p–groups as their underlying additive groups can be classified in terms of the irreducible ZpQ-modules. If such a ZQ-module V is indecomposable it is either the ZpQ-injective hull W of an irreducible ZpQ-module (viewed as a ZQ-module) or is the submodule W[pn] of such a W consisting of the elements ω ∈ W which satisfy pnw = 0.This classification is used to classify certain abelian-by-nilpotent groups which satisfy Min-n, the minimal condition on normal subgroups. Among the groups to which our classification applies are all quasi-radicable metabelian groups with Min-n, and all metabelian groups which satisfy Min-n and have abelian Sylow p-subgroups for all p.It is also shown that if Q is any countable locally finite p'-group and V is a ZQ-module whose additive group is a p-group, then V can be embedded in a ZQ-module whose additive group is a minimal divisible group containing that of V. Some applications of this result are given.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


2004 ◽  
Vol 76 (1) ◽  
pp. 93-108 ◽  
Author(s):  
M. Arroyo-Jordá ◽  
M. D. Pérez-Ramos

AbstractA lattice formation is a class of groups whose elements are the direct product of Hall subgroups corresponding to pairwise disjoint sets of primes. In this paper Fitting classes with stronger closure properties involving F-subnormal subgroups, for a lattice formation F of full characteristic, are studied. For a subgroup-closed saturated formation G, a characterisation of the G-projectors of finite soluble groups is also obtained. It is inspired by the characterisation of the Carter subgroups as the N-projectors, N being the class of nilpotent groups.


Author(s):  
T. O. Hawkes

Let G be a finite soluble group. In (1) Alperin proves that two system normalizers of G contained in the same Carter subgroup C of G are conjugate in C. In recent unpublished work G.A.Chambers of the University of Wisconsin has proved that, if is a saturated formation, the -normalizers of an A-group are pronormal subgruops; hence, in particular, that two -normalizers contained in an -projector E of an A-group are conjugate in E. In this note we describe an example which shows that in Alperin's theorem the class of nilpotent groups cannot in general be replaced by an arbitary saturated formation without some restriction on the class of soluble groups under consideration. we provePROPOSITION. There exists a saturated formationand a group G which has two-normalizers E1and E2contained in an-projector F of G such that E1and E2are not conjugate in F.


Author(s):  
Gilbert Baumslag

The wreath product is a useful method for constructing new soluble groups from given ones (cf. P. Hall (3)). Now although the wreath product of one soluble group by another is (obviously) always soluble, the corresponding result is no longer true for nilpotent groups. It is the object of § 3 of this note to determine precisely when the wreath product W of a non-trivial nilpotent group A by a non-trivial nilpotent group B is nilpotent; in fact I prove that W is nilpotent if and only if both A and B are (nilpotent) p–groups with A of finite exponent and B finite.


2002 ◽  
Vol 45 (1) ◽  
pp. 149-154
Author(s):  
Marcus du Sautoy

AbstractThe well-behaved Sylow theory for soluble groups is exploited to prove an Euler product for zeta functions counting certain subgroups in pro-soluble groups. This generalizes a result of Grunewald, Segal and Smith for nilpotent groups.AMS 2000 Mathematics subject classification: Primary 20F16; 11M99


1978 ◽  
Vol 25 (1) ◽  
pp. 71-91 ◽  
Author(s):  
M. J. Tomkinson

AbstractIf is a saturated formation of finite soluble groups and G is a finite group whose -residual A is abelian then it is well known that G splits over A and the complements are conjugate. Hartley and Tomkinson (1975) considered the special case of this result in which is the class of nilpotent groups and obtained similar results for abelian-by-hypercentral groups with rank restrictions on the abelian normal subgroup. Here we consider the super-soluble case, obtaining corresponding results for abelian-by-hypercyclic groups.


Sign in / Sign up

Export Citation Format

Share Document