scholarly journals FUZZY APPROACH FOR CNOT GATE IN QUANTUM COMPUTATION WITH MIXED STATES

Author(s):  
GIUSEPPE SERGIOLI ◽  
HECTOR FREYTES
Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1178
Author(s):  
Hector Freytes ◽  
Giuseppe Sergioli

An holistic extension for classical propositional logic is introduced in the framework of quantum computation with mixed states. The mentioned extension is obtained by applying the quantum Fredkin gate to non-factorizable bipartite states. In particular, an extended notion of classical contradiction is studied in this holistic framework.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ping Zhou ◽  
Li Lv

Abstract Implementing CNOT operation nonlocally is one of central tasks in distributed quantum computation. Most of previously protocols for implementation quantum CNOT operation only consider implement CNOT operation in one degree of freedom(DOF). In this paper, we present a scheme for nonlocal implementation of hyper-parallel CNOT operation in polarization and spatial-mode DOFs via hyperentanglement. The CNOT operations in polarization DOF and spatial-mode DOF can be remote implemented simultaneously with hyperentanglement assisited by cross-Kerr nonlinearity. Hyper-parallel nonlocal CNOT gate can enhance the quantum channel capacity for distributed quantum computation and long-distance quantum communication. We discuss the experiment feasibility for hyper-parallel nonlocal gate. It shows that the protocol for hyper-parallel nonlocal CNOT operation can be realized with current technology.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Alessio Calzona ◽  
Nicolas Bauer ◽  
Björn Trauzettel

The CNOT gate is a two-qubit gate which is essential for universal quantum computation. A well-established approach to implement it within Majorana-based qubits relies on subsequent measurement of (joint) Majorana parities. We propose an alternative scheme which operates a protected CNOT gate via the holonomic control of a handful of system parameters, without requiring any measurement. We show how the adiabatic tuning of pair-wise couplings between Majoranas can robustly lead to the full entanglement of two qubits, insensitive with respect to small variations in the control of the parameters.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 636 ◽  
Author(s):  
Hector Freytes ◽  
Roberto Giuntini ◽  
Giuseppe Sergioli

A holistic extension of classical propositional logic is introduced via Toffoli quantum gate. This extension is based on the framework of the so-called “quantum computation with mixed states”, where also irreversible transformations are taken into account. Formal aspects of this new logical system are detailed: in particular, the concepts of tautology and contradiction are investigated in this extension. These concepts turn out to receive substantial changes due to the non-separability of some quantum states; as an example, Werner states emerge as particular cases of “holistic" contradiction.


2019 ◽  
Vol 34 (07n08) ◽  
pp. 1950146
Author(s):  
Kazuo Fujikawa ◽  
C. H. Oh ◽  
Koichiro Umetsu

A new approach to the classical limit of Grover’s algorithm is discussed by assuming a very rapid dephasing of a system between consecutive Grover’s unitary operations, which drives pure quantum states to decohered mixed states. One can identify a specific element among [Formula: see text] unsorted elements by a probability of the order of unity after [Formula: see text] steps of classical amplification, which is realized by a combination of Grover’s unitary operation and rapid dephasing, in contrast to [Formula: see text] steps in quantum mechanical amplification. The initial two-state system with enormously unbalanced existence probabilities, which is realized by a chosen specific state and a superposition of all the rest of the states among [Formula: see text] unsorted states, is crucial in the present analysis of classical amplification. This analysis illustrates Grover’s algorithm in extremely noisy circumstances. A similar increase from [Formula: see text] to [Formula: see text] steps due to the loss of quantum coherence takes place in the analog model of Farhi and Gutmann where the entanglement does not play an obvious role. This supports a view that entanglement is crucial in quantum computation to describe quantum states by a set of qubits, but the actual speedup of the quantum computation is based on quantum coherence.


2006 ◽  
Vol 6 (6) ◽  
pp. 495-515
Author(s):  
J.C. Garcia-Escartin ◽  
P. Chamorro-Posada

We show that universal quantum logic can be achieved using only linear optics and a quantum shutter device. With these elements, we design a quantum memory for any number of qubits and a CNOT gate which are the basis of a universal quantum computer. An interaction-free model for a quantum shutter is given.


Sign in / Sign up

Export Citation Format

Share Document