scholarly journals Scalar field (wave) dark matter

Author(s):  
Tonatiuh Matos ◽  
Victor H. Robles
2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2010 ◽  
Author(s):  
L. Arturo Ureña-López ◽  
Alfredo Macias ◽  
Marco Maceda

2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040050
Author(s):  
Boris E. Meierovich

Equilibrium of a gravitating scalar field inside a black hole compressed to the state of a boson matter, in balance with a longitudinal vector field (dark matter) from outside is considered. Analytical consideration, confirmed numerically, shows that there exist static solutions of Einstein’s equations with arbitrary high total mass of a black hole, where the component of the metric tensor [Formula: see text] changes its sign twice. The balance of the energy-momentum tensors of the scalar field and the longitudinal vector field at the interface ensures the equilibrium of these phases. Considering a gravitating scalar field as an example, the internal structure of a black hole is revealed. Its phase equilibrium with the longitudinal vector field, describing dark matter on the periphery of a galaxy, determines the dependence of the velocity on the plateau of galaxy rotation curves on the mass of a black hole, located in the center of a galaxy.


2011 ◽  
Author(s):  
F. Briscese ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
Elí Santos-Rodríguez ◽  
...  

2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2011 ◽  
Vol 2011 (03) ◽  
pp. 039-039 ◽  
Author(s):  
Daniele Bertacca ◽  
Alvise Raccanelli ◽  
Oliver F Piattella ◽  
Davide Pietrobon ◽  
Nicola Bartolo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document