scholarly journals Modern Topics in Scalar Field Cosmology

2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.

2015 ◽  
Vol 24 (04) ◽  
pp. 1541005
Author(s):  
James B. Dent

A primordial gravitational wave background is a hallmark of inflationary cosmology. The recent announcement made by the BICEP2 collaboration of a possible measurement of B-mode polarization of the CMB on degree scales has produced an abundance of ideas and speculations on how such a signal constrains the inflationary paradigm, or possible alternative mechanisms of gravitational wave production. Here the possibility of a contribution to the gravitational wave background from the relaxation of a scalar field after a global phase transition is reviewed. The general contribution to the overall power is shown, and it is then demonstrated that if the BICEP2 result were to hold, this mechanism could at best produce a very small fraction of the measured tensor power.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


1965 ◽  
Vol 20 (4) ◽  
pp. 495-497
Author(s):  
G. Braunss

A brief consideration of the problem of gravitational waves is given on the basis of the following assumption: The components of the metric tensor are functionals of a field by which, in the sense of HEISENBERG’S nonlinear theory, all other fields resp. the corresponding interactions can be deduced. For the sake of mathematical simplicity a scalar field Φ (noncharged bosons) is considered instead of a spinor field. The condition gmn=gmn (Φ) resp. Rmn = Rmn (Φ) leads to the statement that the concept of a free gravitational wave, i. e. a wave which is a solution of Rmn=0 or Rklmn = 0, cannot be accepted. A free wave is here by definition a wave which is so far from the origin that one can neglect in the field eqs. all terms which represent a strong interaction. A comparison with a spinor field leads, with regard to this definition, to the conclusion that a free wave may be considered as a neutrino wave and gravitation as the weakest interaction possible of neutrino fields.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641023 ◽  
Author(s):  
Shahen Hacyan

The polarization of electromagnetic waves in the presence of a gravitational wave is analyzed. The rotation of the polarization angle and the Stokes parameters are deduced. A possible application to the detection of stochastic background of gravitational waves is proposed as a complement to the pulsar timing method.


Nature ◽  
2021 ◽  
Vol 600 (7889) ◽  
pp. 424-428
Author(s):  
Sander M. Vermeulen ◽  
Philip Relton ◽  
Hartmut Grote ◽  
Vivien Raymond ◽  
Christoph Affeldt ◽  
...  

AbstractThe nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape1. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities2–8. Here we describe a direct search for scalar field dark matter using a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits on the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beam splitter of the GEO600 interferometer. These constraints improve on bounds from previous direct searches by more than six orders of magnitude and are, in some cases, more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be investigated or constrained with direct searches using gravitational-wave detectors and highlights the potential of quantum-enhanced interferometry for dark matter detection.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022044
Author(s):  
Zheng Li ◽  
Chenyu Yang ◽  
Xinen Zhou

Abstract Dark matter is a type of invisible matter that analytically exists in the universe. Nowadays, scholars have yet detected it and confirmed its presence experimentally. Einstein predicted gravitational waves based on his general theory of relativity. In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) first detected the gravitational wave. This paper reviews the background of dark matter and gravitational waves and introduces the method of detecting dark matter with gravitational waves. Moreover, the feasibility of the scenario has been verified based on information retrieval and theoretical analysis. These results shed light on the future detection schemes of dark matter detection.


2005 ◽  
Vol 22 (3) ◽  
pp. 179-183 ◽  
Author(s):  
George Hobbs

AbstractThe number of known millisecond pulsars has dramatically increased in the last few years. Regular observations of these pulsars may allow gravitational waves with frequencies ∼10−9 Hz to be detected. A ‘pulsar timing array’ is therefore complimentary to other searches for gravitational waves using ground-based or space-based interferometers that are sensitive to much higher frequencies. In this review we describe (1) the basic methods for using an array of pulsars as a gravitational wave detector, (2) the sources of the potentially detectable waves, (3) current limits on individual sources and a stochastic background, and (4) the new project recently started using the Parkes radio telescope.


Sign in / Sign up

Export Citation Format

Share Document