galaxy rotation curves
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 33)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Felipe J. Llanes-Estrada ◽  
Adriana Bariego Quintana ◽  
Oliver Manzanilla Carretero

2021 ◽  
Vol 923 (1) ◽  
pp. 68
Author(s):  
P.-A. Oria ◽  
B. Famaey ◽  
G. F. Thomas ◽  
R. Ibata ◽  
J. Freundlich ◽  
...  

Abstract We explore the predictions of Milgromian gravity (MOND) in the local universe by considering the distribution of the “phantom” dark matter (PDM) that would source the MOND gravitational field in Newtonian gravity, allowing an easy comparison with the dark matter framework. For this, we specifically deal with the quasi-linear version of MOND (QUMOND). We compute the “stellar-to-(phantom)halo mass relation” (SHMR), a monotonically increasing power law resembling the SHMR observationally deduced from spiral galaxy rotation curves in the Newtonian context. We show that the gas-to-(phantom)halo mass relation is flat. We generate a map of the Local Volume in QUMOND, highlighting the important influence of distant galaxy clusters, in particular Virgo. This allows us to explore the scatter of the SHMR and the average density of PDM around galaxies in the Local Volume, ΩPDM ≈ 0.1, below the average cold dark matter density in a ΛCDM universe. We provide a model of the Milky Way in its external field in the MOND context, which we compare to an observational estimate of the escape velocity curve. Finally, we highlight the peculiar features related to the external field effect in the form of negative PDM density zones in the outskirts of each galaxy, and test a new analytic formula for computing galaxy rotation curves in the presence of an external field in QUMOND. While we show that the negative PDM density zones would be difficult to detect dynamically, we quantify the weak-lensing signal they could produce for lenses at z ∼ 0.3.


2021 ◽  
Vol 36 (34) ◽  
Author(s):  
M. Novello ◽  
A. E. S. Hartmann ◽  
E. Bittencourt

We analyze the recently obtained static and spherically symmetric solutions of the Spinor Theory of Gravity (STG) which, in the weak field limit, presents an effective Newtonian potential that contains an extra logarithmic behavior. We apply this solution to the description of the galaxy rotation curves finding an interesting analogy with the dark matter halo profile proposed by Navarro, Frenk and White.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 346
Author(s):  
Felipe J. Llanes-Estrada

The flattening of spiral-galaxy rotation curves is unnatural in view of the expectations from Kepler’s third law and a central mass. It is interesting, however, that the radius-independence velocity is what one expects in one less dimension. In our three-dimensional space, the rotation curve is natural if, outside the galaxy’s center, the gravitational potential corresponds to that of a very prolate ellipsoid, filament, string, or otherwise cylindrical structure perpendicular to the galactic plane. While there is observational evidence (and numerical simulations) for filamentary structure at large scales, this has not been discussed at scales commensurable with galactic sizes. If, nevertheless, the hypothesis is tentatively adopted, the scaling exponent of the baryonic Tully–Fisher relation due to accretion of visible matter by the halo comes out to reasonably be 4. At a minimum, this analytical limit would suggest that simulations yielding prolate haloes would provide a better overall fit to small-scale galaxy data.


Author(s):  
Tomer Zimmerman ◽  
Roy Gomel

When dealing with galactic dynamics, or more specifically, with galactic rotation curves, one basic assumption is always taken: the frame of reference relative to which the rotational velocities are given is assumed to be inertial. In other words, fictitious forces are assumed to vanish relative to the observational frame of a given galaxy. It might be interesting, however, to explore the outcomes of dropping that assumption; that is, to search for signatures of non-inertial behavior in the observed data. In this work, we show that the very discrepancy in galaxy rotation curves could be attributed to non-inertial effects. We derive a model for spiral galaxies that takes into account the possible influence of fictitious forces and find that the additional terms in the new model, due to fictitious forces, closely resemble dark halo profiles. Following this result, we apply the new model to a wide sample of galaxies, spanning a large range of luminosities and radii. It turns out that the new model accurately reproduces the structures of the rotation curves and provides very good fittings to the data.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
Roy Gomel ◽  
Tomer Zimmerman

When dealing with galactic dynamics, or more specifically, with galactic rotation curves, one basic assumption is always taken: the frame of reference relative to which the rotational velocities are given is assumed to be inertial. In other words, fictitious forces are assumed to vanish relative to the observational frame of a given galaxy. It might be interesting, however, to explore the outcomes of dropping that assumption; that is, to search for signatures of non-inertial behavior in the observed data. In this work, we show that the very discrepancy in galaxy rotation curves could be attributed to non-inertial effects. We derive a model for spiral galaxies that takes into account the possible influence of fictitious forces and find that the additional terms in the new model, due to fictitious forces, closely resemble dark halo profiles. Following this result, we apply the new model to a wide sample of galaxies, spanning a large range of luminosities and radii. It turns out that the new model accurately reproduces the structures of the rotation curves and provides very good fittings to the data.


Author(s):  
R. Kh. Karimov ◽  
R. N. Izmailov ◽  
K. K. Nandi

The scalar–tensor–vector–gravity (STVG), a prototype of modified gravity developed by Moffat, can correctly explain galaxy rotation curves, cluster dynamics, Bullet Cluster phenomena and cosmological data without invoking the observationally elusive general relativistic (GR) dark matter. Further, recent observations of neutron star masses are shown to defy some GR predictions, whereas STVG turns out to be more consistent with those observations. These successes indicate that STVG could be a potential candidate for a new theory of gravity. However, an important question concerns the possible range of values of the STVG dimensionless parameter [Formula: see text] imposed by various physical scenarios. In the literature, the range [Formula: see text] corresponding to different central source masses has been suggested. We show here that the [Formula: see text] can be considerably constrained into the range [Formula: see text] assuming that the updated GPS fluctuation does not exceed the [Formula: see text]-dependent correction to the terrestrial Sagnac delay.


Sign in / Sign up

Export Citation Format

Share Document