Application of MCDM Technique for the Selection of Biodiesel Fuel Blend for Sustainable Motorization

Author(s):  
Surya Kanth ◽  
Sumita Debbarma ◽  
Jagadish ◽  
Biplab Das
2014 ◽  
Vol 17 (2) ◽  
pp. 102-108
Author(s):  
Phuoc Van Nguyen ◽  
Chhoun Vi Thun ◽  
Quan Thanh Pham

Different technologies are currently available for biodiesel production from various kinds of lipid containing feedstock. Among them, the alkaline-catalyzed methods are the most widely studied. However, here are several disadvantages related to biodiesel production using alkaline catalysts such as generation of wastewater, catalyst deactivation, difficulty in the separation of biodiesel from catalyst and glycerin, etc. To limit the problems mentioned above, in this study, biodiesel is produced by a non-catalytic using C2H5OH. The effect of experimental variables (the molar ratio ethanol/oil of 41.18:1 – 46.82:1, reaction times of 50 - 90 minutes and reaction temperatures of 2750C - 2950C) on the yield of biodiesel was studied. The 96% yield of Cambodia biodiesel of reaction between C2H5OH and Jatropha Oil at 46:1 at temperature 2900C at 60 minutes no using catalysts. Obtained biodiesel fuel was up to the International Standard ASTM D6751 for biodiesel fuel blend stock (B100).


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


2013 ◽  
Vol 47 (11) ◽  
pp. 5931-5938 ◽  
Author(s):  
Miriam E. Gerlofs-Nijland ◽  
Annike I. Totlandsdal ◽  
Theodoros Tzamkiozis ◽  
Daan L. A. C Leseman ◽  
Zissis Samaras ◽  
...  

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

Fossil fuel consumption provides a negative impact on the human health and environment in parallel with the decreased availability of this valuable natural resource for the future generations to use as a source of chemical energy for all applications in energy, power, and propulsion. The diesel fuel consumption in the transport sector is higher than the gasoline in most developing countries for reasons of cost and economy. Biodiesel fuel offers a good replacement for diesel fuel in compression ignition (CI) diesel engines. Earlier investigations by the authors revealed that a blend of 70% amla seed oil biodiesel and 30% eucalyptus oil (AB70EU30) is the favorable alternative renewable fuel blend that can be used as a fuel in diesel engines. With any fuel, air/fuel mixing and mixture preparation impact efficiency, emissions, and performance in CI engines. Minor adjustments in engine parameters to improve air/fuel mixing and combustion are deployable approaches to achieve good performance with alternative fuel blends in CI engines. This paper provides the role of a minor modification to engine parameters (compression ratio, injection timing, and injection pressure) on improved performance using the above mixture of binary fuel blends (AB70EU30). The results showed that the use of AB70EU30 in modified engine resulted in higher brake thermal efficiency and lower brake specific fuel consumption compared to normal diesel for improved combustion that also resulted in very low tailpipe emissions.


Sign in / Sign up

Export Citation Format

Share Document