scholarly journals Studies on biodiesel produced from Jatropha oil in Cambodia by a non-catalytic using C2H5OH

2014 ◽  
Vol 17 (2) ◽  
pp. 102-108
Author(s):  
Phuoc Van Nguyen ◽  
Chhoun Vi Thun ◽  
Quan Thanh Pham

Different technologies are currently available for biodiesel production from various kinds of lipid containing feedstock. Among them, the alkaline-catalyzed methods are the most widely studied. However, here are several disadvantages related to biodiesel production using alkaline catalysts such as generation of wastewater, catalyst deactivation, difficulty in the separation of biodiesel from catalyst and glycerin, etc. To limit the problems mentioned above, in this study, biodiesel is produced by a non-catalytic using C2H5OH. The effect of experimental variables (the molar ratio ethanol/oil of 41.18:1 – 46.82:1, reaction times of 50 - 90 minutes and reaction temperatures of 2750C - 2950C) on the yield of biodiesel was studied. The 96% yield of Cambodia biodiesel of reaction between C2H5OH and Jatropha Oil at 46:1 at temperature 2900C at 60 minutes no using catalysts. Obtained biodiesel fuel was up to the International Standard ASTM D6751 for biodiesel fuel blend stock (B100).

Author(s):  
Muh. Irwan ◽  
Hamdani Saidi ◽  
M. A. Rachman ◽  
Ramli Ramli ◽  
Marlinda Marlinda

The biodiesel synthesis through alcoholysis process of triglyceride from Jatropha curcas using different type of alcohol, such as: methanol, ethanol, isopropyl alcohol and tert-butanol, was conducted in the presence of potassium hydroxide (KOH) as catalyst under 35 kHz frequency ultrasound irradiation. The optimum conditions, such as: alcohol to jatropha oil molar ratio, concentration of catalyst, reaction temperature, and reaction time, were found  to be 7:1 of alcohol to jatropha oil molar ratio, 0.5 % of KOH, temperature of reaction at 35 0C, within the reaction times of 15 minutes. The results obtained for the different types of alcohol were 62.77 %, 57.93 %, 51.64 %, and 46.77 % for methanol, ethanol, isopropyl alcohol, and tert-butanol, respectively. Copyright © 2017 BCREC Group. All rights reservedReceived: 11st November 2016; Revised: 8th March 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Irwan, M., Saidi, H., Rachman, M.A., Ramli, R., Marlinda, M. (2017). Rapid Alcoholysis of Jatropha Curcas Oil for Biodiesel Production Using Ultrasound Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 306-311 (doi:10.9767/bcrec.12.3.801.306-311) 


2021 ◽  
Vol 12 (2) ◽  
pp. 141-143
Author(s):  
I.S. Ibrahim ◽  
I.T. Abdullahi ◽  
F.Y. Muhammad

Biodiesel is derived from triglycerides by transesterification reaction with alcohol (ethanol or methanol), and has classified as a renewable, biodegradable, and nontoxic fuel. Several methods for biodiesel production have been developed, among which transesterification using alkali-catalysis gives high levels of conversion of triglycerides to their corresponding methyl esters in short reaction times. This study was conducted to extract the neem and Jatropha oil for the production of biodiesel using alkali-catalyzed reaction The samples were subjected to reaction with sodium hydroxide (NaOH), 0.2:1 w/v methanol (MeOH) to oil mole ratio, reaction temperature of 6°C, and 30 min reaction time. The final biodiesel yield obtained was 47.5% and 45.5% from the neem and the jaropha oil sample respectively. The basic physicochemical properties of the jatropha methyl ester produced from both jatropha oil samples were found to be within the ASTM D6751 specified limits.


2018 ◽  
Vol 9 (1) ◽  
pp. 133-139
Author(s):  
Waleed S. Mohammed ◽  
Ahmed H. El-Shazly ◽  
Marwa F. Elkady ◽  
Masahiro Ohshima

Introduction: The utilization of biodiesel as an alternative fuel is turning out to be progressively famous these days because of worldwide energy deficiency. The enthusiasm for utilizing Jatropha as a non-edible oil feedstock is quickly developing. The performance of the base catalyzed methanolysis reaction could be improved by a continuous process through a microreactor in view of the high mass transfer coefficient of this technique. Materials & Methods: Nanozirconium tungstovanadate, which was synthetized using sol-gel preparation method, was utilized in a complementary step for biodiesel production process. The prepared material has an average diameter of 0.066 &µm. Results: First, the NaOH catalyzed methanolysis of Jatropha oil was investigated in a continuous microreactor, and the efficient mixing over different mixers and its impact on the biodiesel yield were studied under varied conditions. Second, the effect of adding the nanocatalyst as a second stage was investigated. Conclusion: The maximum percentage of produced methyl esters from Jatropha oil was 98.1% using a methanol/Jatropha oil molar ratio of 11 within 94 s using 1% NaOH at 60 &°C. The same maximum conversion ratio was recorded with the nanocatalyst via only 0.3% NaOH.


2014 ◽  
Vol 554 ◽  
pp. 500-504 ◽  
Author(s):  
Farid Nasir Ani ◽  
Ahmed Bakheit Elhameed

This paper investigated the three critical reaction parameters including catalyst concentration, microwave exit power and reaction time for the transesterification process of jatropha curcas oil using microwave irradiation. The work is an attempt to reduce the production cost of biodiesel. Similar quantities of methanol to oil molar ratio 6:1 and calcium oxide as a heterogeneous catalyst were used. The results showed that the best yield percentage 96% was obtained using 300W microwave exit power, 8 %wt CaO and 7 min. The methyl ester FAME obtained was within the standard of biodiesel fuel.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Egle Sendzikiene ◽  
Violeta Makareviciene

Abstract The ever-increasing environmental pollution from greenhouse gases motivates the search for methods to reduce it. One such method is the use of biodiesel fuels in the transport sector. Conventional biodiesel production generates up to 10% of a by-product, raw glycerol, whose amount continues to increase as biodiesel production volumes expand, but its demand remains limited. Recently, options have been analysed to replace the triglyceride transesterification process generally used in biodiesel production with an interesterification process that does not generate raw glycerol, instead yielding triacylglycerol that can be directly used as fuel for diesel engines by mixing with fatty acid esters. Additionally, triacylglycerol improves the low-temperature properties of fuel. The present article discusses triglyceride interesterification processes using various carboxylate esters of low molecular weight. Information is provided on raw materials that can be subjected to interesterification for biodiesel synthesis. The possible applications of chemical and enzymatic catalysis for triglyceride interesterification are discussed, and the influence of the catalyst amount, molar ratio of reactants, temperature and process duration on the effectiveness of interesterification is examined. The conditions and effectiveness of noncatalytic interesterification are also discussed in the article. Qualitative indicators of the products obtained and their conformity to the requirements of the European standard for biodiesel fuel are discussed.


2020 ◽  
Vol 21 (1) ◽  
pp. 88
Author(s):  
Alwi Gery Agustan Siregar ◽  
Renita Manurung ◽  
Taslim Taslim

In this study, silica derived from corncobs impregnated with sodium hydroxide to obtain sodium silicate was calcined, prepared, and employed as a solid base catalyst for the conversion of oils to biodiesel. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Gas Chromatography-Mass Spectrometry (GC-MS) was used to characterize the biodiesel products. The optimum catalyst conditions were calcination temperature of 400 °C for 2 h, catalyst loading of 2%, and methanol: oil molar ratio of 12:1 at 60 °C for 60 min, that resulted in a yield of 79.49%. The final product conforms to the selected biodiesel fuel properties of European standard (EN14214) specifications. Calcined corncob-derived sodium silicate showed high potential for use as a low-cost, high-performance, simple-to-prepare solid catalyst for biodiesel synthesis.


Author(s):  
M. E. Borges ◽  
A. Brito ◽  
A. Hernández ◽  
L. Díaz

Biodiesel as an alternative fuel has become more important in recent times due to the increasing awareness of fossil fuel resources and the environmental benefits. The main disadvantages are its cost and availability of fats and oils resources. By collecting used frying oils and converting them to biodiesel fuel, the cost of biodiesel is significantly lowered and the negative impact of disposing used oil to environment reduced.The aim of this study was to analyse the performance of several alkali metal exchanged zeolites as heterogeneous catalysts for biodiesel production from sunflower oil and waste oil. Several catalysts studied showed a high activity for transesterification reaction with batch or continuous flow reactor operation conditions performed: temperature (100- 155°C), methanol/oil molar ratio (12:1- 72:1 mol/mol) and catalyst concentration (3-6 wt %). Results indicated that biodiesel production using waste oil as feedstock has good potential because it is an inexpensive and available feedstock.


2011 ◽  
Vol 14 (4) ◽  
pp. 75-85
Author(s):  
Phuong Nu Thanh Ton ◽  
Hai Viet Le ◽  
Hien Thi To

This research focused on BDF production from Jatropha seed oil and evaluation of its exhaust gas on the diesel engine in order to produce and confirm the environmental benefit of BDF. This report showed the results of research on BDF production from Jatropha seed oil and engine emissions from blend of diesel fuel and BDF from Jatropha oil. A maximum of 78% biodiesel yield was found at 2.25%w/w catalyst KOH, the optimum molar ratio of Jatropha oil to methanol of 1:6, at a reaction temperature of 550C in 45 minutes. The use of BDF blends in conventional diesel engine results in substantial reduction in emission of hydrocarbon CxHy, carbon monoxide CO and sulfates SO2, whereas NOx emission increases a little. The reason for reducing of CxHy, CO and SO2 emission and increasing NOx emission with biodiesel mixtures was mainly due to the presence of oxygen in their molecular structure.


Author(s):  
Juan Camilo Acevedo-Páez ◽  
Néstor Andres Urbina-Suárez ◽  
Astrid Zuleima Acevedo-Rodríguez ◽  
Luis Carlos Becerra-Orozco

The biodiesel production was analyzed by chemical and enzymatic processes, from used cooking oil (UCO), evaluating the quality and yield of the product obtained in each method. For the chemical process, an acid esterification followed by a basic transesterification was developed, (reaction temperature: 60 °C, oil:methanol 1:6 molar ratio, concentration of KOH catalyst: 1% w/w reaction times: 55 and 70 min); and enzymatic transesterification (temperature: 38 °C, oil:methanol 1:3 molar ratio, enzyme concentration lipase XX 25 split liquid: 5%, reaction times: 3 and 6 hours). Physicochemical properties (i.e. density, kinematic viscosity, moisture content, fatty acid profile, percentage of acidity, peroxides index and saponification) of the raw material were determined. Results showed the presence of oleic acid (42.45%) and palmitic acid (33.52%). The highest yield obtained was from the chemical transesterification under the conditions of 60 °C, 1% KOH and 70 min with a conversion percentage of 96.15% and an acid number of 1.33 mmKOH/g, compared to the enzymatic transesterification which registered a high acid number of 6.91 mmKOH/g and conversion percentage of 48.81% under the conditions of 38 °C, 5% of enzyme lipase and 3 hours.


Sign in / Sign up

Export Citation Format

Share Document