ROOM-TEMPERATURE ATOMIC ENSEMBLES FOR QUANTUM MEMORY AND MAGNETOMETRY

Author(s):  
K. JENSEN ◽  
W. WASILEVSKI ◽  
H. KRAUTER ◽  
J. J. RENEMA ◽  
B. M. NIELSEN ◽  
...  
2011 ◽  
Vol 7 (10) ◽  
pp. 794-798 ◽  
Author(s):  
M. Hosseini ◽  
G. Campbell ◽  
B. M. Sparkes ◽  
P. K. Lam ◽  
B. C. Buchler

2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Mehdi Namazi ◽  
Connor Kupchak ◽  
Bertus Jordaan ◽  
Reihaneh Shahrokhshahi ◽  
Eden Figueroa

Optica ◽  
2021 ◽  
Author(s):  
Hang Li ◽  
Jian-Peng Dou ◽  
Xiao-Ling Pang ◽  
Tian-Huai Yang ◽  
Chao-Ni Zhang ◽  
...  

2013 ◽  
Vol 87 (1) ◽  
Author(s):  
J. H. Shim ◽  
I. Niemeyer ◽  
J. Zhang ◽  
D. Suter

2010 ◽  
Vol 08 (01n02) ◽  
pp. 181-218 ◽  
Author(s):  
MARCIN ZWIERZ ◽  
PIETER KOK

Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes — stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium — an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single stepQ-qubit GHZ states with success probability psuccess ~ ηQ/2, where η is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer.


2009 ◽  
Vol 07 (04) ◽  
pp. 811-820 ◽  
Author(s):  
FENG MEI ◽  
YA-FEI YU ◽  
ZHI-MING ZHANG

Large scale quantum information processing requires stable and long-lived quantum memories. Here, using atom-photon entanglement, we propose an experimentally feasible scheme to realize decoherence-free quantum memory with atomic ensembles, and show one of its applications, remote transfer of unknown quantum state, based on laser manipulation of atomic ensembles, photonic state operation through optical elements, and single-photon detection with moderate efficiency. The scheme, with inherent fault-tolerance to the practical noise and imperfections, allows one to retrieve the information in the memory for further quantum information processing within the reach of current technology.


2020 ◽  
Vol 6 (6) ◽  
pp. eaax1425
Author(s):  
Xiao-Ling Pang ◽  
Ai-Lin Yang ◽  
Jian-Peng Dou ◽  
Hang Li ◽  
Chao-Ni Zhang ◽  
...  

Quantum memory capable of storage and retrieval of flying photons on demand is crucial for developing quantum information technologies. However, the devices needed for long-distance links are different from those envisioned for local processing. We present the first hybrid quantum memory-enabled network by demonstrating the interconnection and simultaneous operation of two types of quantum memory: an atomic ensemble-based memory and an all-optical Loop memory. Interfacing the quantum memories at room temperature, we observe a well-preserved quantum correlation and a violation of Cauchy-Schwarz inequality. Furthermore, we demonstrate the creation and storage of a fully-operable heralded photon chain state that can achieve memory-built-in combining, swapping, splitting, tuning, and chopping single photons in a chain temporally. Such a quantum network allows atomic excitations to be generated, stored, and converted to broadband photons, which are then transferred to the next node, stored, and faithfully retrieved, all at high speed and in a programmable fashion.


2011 ◽  
Vol 264 ◽  
pp. 012022
Author(s):  
K Jensen ◽  
W Wasilewski ◽  
H Krauter ◽  
T Fernholz ◽  
B M Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document